58 research outputs found

    Solitonic Integrable Perturbations of Parafermionic Theories

    Get PDF
    The quantum integrability of a class of massive perturbations of the parafermionic conformal field theories associated to compact Lie groups is established by showing that they have quantum conserved densities of scale dimension 2 and 3. These theories are integrable for any value of a continuous vector coupling constant, and they generalize the perturbation of the minimal parafermionic models by their first thermal operator. The classical equations-of-motion of these perturbed theories are the non-abelian affine Toda equations which admit (charged) soliton solutions whose semi-classical quantization is expected to permit the identification of the exact S-matrix of the theory.Comment: 18 pages, plain TeX, no figure

    Failure locus of polypropylene nonwoven fabrics under in-plane biaxial deformation

    Get PDF
    The failure locus, the characteristics of the stress–strain curve and the damage localization patterns were analyzed in a polypropylene nonwoven fabric under in-plane biaxial deformation. The analysis was carried out by means of a homogenization model developed within the context of the finite element method. It provides the constitutive response for a mesodomain of the fabric corresponding to the area associated to a finite element and takes into account the main deformation and damage mechanisms experimentally observed. It was found that the failure locus in the stress space was accurately predicted by the Von Mises criterion and failure took place by the localization of damage into a crack perpendicular to the main loading axis

    Realizing Higher-Level Gauge Symmetries in String Theory: New Embeddings for String GUTs

    Get PDF
    We consider the methods by which higher-level and non-simply laced gauge symmetries can be realized in free-field heterotic string theory. We show that all such realizations have a common underlying feature, namely a dimensional truncation of the charge lattice, and we identify such dimensional truncations with certain irregular embeddings of higher-level and non-simply laced gauge groups within level-one simply-laced gauge groups. This identification allows us to formulate a direct mapping between a given subgroup embedding, and the sorts of GSO constraints that are necessary in order to realize the embedding in string theory. This also allows us to determine a number of useful constraints that generally affect string GUT model-building. For example, most string GUT realizations of higher-level gauge symmetries G_k employ the so-called diagonal embeddings G_k\subset G\times G \times...\times G. We find that there exist interesting alternative embeddings by which such groups can be realized at higher levels, and we derive a complete list of all possibilities for the GUT groups SU(5), SU(6), SO(10), and E_6 at levels k=2,3,4 (and in some cases up to k=7). We find that these new embeddings are always more efficient and require less central charge than the diagonal embeddings which have traditionally been employed. As a byproduct, we also prove that it is impossible to realize SO(10) at levels k>4. This implies, in particular, that free-field heterotic string models can never give a massless 126 representation of SO(10).Comment: 69 pages, LaTeX, 5 figures (Encapsulated PostScript). Revised to match published versio

    A constitutive model for the in-plane mechanical behavior of nonwoven fabrics

    Get PDF
    A constitutive model is presented for the in-plane mechanical behavior of nonwoven fabrics. The model is developed within the context of the finite element method and provides the constitutive response for a mesodomain of the fabric corresponding to the area associated to a finite element. The model is built upon the ensemble of three blocks, namely fabric, fibers and damage. The continuum tensorial formulation of the fabric response rigorously takes into account the effect of fiber rotation for large strains and includes the nonlinear fiber behavior. In addition, the various damage mechanisms experimentally observed (bond and fiber fracture, interfiber friction and fiber pull-out) are included in a phenomenological way and the random nature of these materials is also taken into account by means of a Monte Carlo lottery to determine the damage thresholds. The model results are validated with recent experimental results on the tensile response of smooth and notched specimens of a polypropylene nonwoven fabric

    Bevacizumab plus paclitaxel versus placebo plus paclitaxel as first-line therapy for HER2-negative metastatic breast cancer (MERiDiAN): A double-blind placebo-controlled randomised phase III trial with prospective biomarker evaluation

    Get PDF
    Aim: MERiDiAN evaluated plasma vascular endothelial growth factor-A (pVEGF-A) prospectively as a predictive biomarker for bevacizumab efficacy in metastatic breast cancer (mBC). Methods: In this double-blind placebo-controlled randomised phase III trial, eligible patients had HER2-negative mBC previously untreated with chemotherapy. pVEGF-A was measured before randomisation to paclitaxel 90 mg/m2 on days 1, 8 and 15 with either placebo or bevacizumab 10 mg/kg on days 1 and 15, repeated every 4 weeks until disease progression, unacceptable toxicity or consent withdrawal. Stratification factors were baseline pVEGF-A, prior adjuvant chemotherapy, hormone receptor status and geographic region. Co-primary endpoints were investigator-assessed progression-free survival (PFS) in the intent-to-treat and pVEGF-Ahigh populations. Results: Of 481 patients randomised (242 placeboepaclitaxel; 239 bevacizumabepaclitaxel), 471 received study treatment. The stratified PFS hazard ratio was 0.68 (99% confidence interval, 0.51e0.91; log-rank p Z 0.0007) in the intent-to-treat population (median 8.8 months with placeboepaclitaxel versus 11.0 months with bevacizumabepaclitaxel) and 0.64 (96% con-fidence interval, 0.47e0.88; log-rank p Z 0.0038) in the pVEGF-Ahigh subgroup. The PFS treatment-by-VEGF-A interaction p value (secondary end-point) was 0.4619. Bevacizumab was associated with increased incidences of bleeding (all grades: 45% versus 27% with placebo), neutropenia (all grades: 39% versus 29%; grade 3: 25% versus 13%) and hypertension (all grades: 31% versus 13%; grade 3: 11% versus 4%). Conclusion: The significant PFS improvement with bevacizumab is consistent with previous placebo-controlled first-line trials in mBC. Results do not support using baseline pVEGF-A to identify patients benefitting most from bevacizumab. Clinical trials registration: ClinicalTrials.gov NCT01663727

    Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future

    Get PDF
    Changes in stratospheric ozone and climate over the past 40-plus years have altered the solar ultraviolet (UV) radiation conditions at the Earth's surface. Ozone depletion has also contributed to climate change across the Southern Hemisphere. These changes are interacting in complex ways to affect human health, food and water security, and ecosystem services. Many adverse effects of high UV exposure have been avoided thanks to the Montreal Protocol with its Amendments and Adjustments, which have effectively controlled the production and use of ozone-depleting substances. This international treaty has also played an important role in mitigating climate change. Climate change is modifying UV exposure and affecting how people and ecosystems respond to UV; these effects will become more pronounced in the future. The interactions between stratospheric ozone, climate and UV radiation will therefore shift over time; however, the Montreal Protocol will continue to have far-reaching benefits for human well-being and environmental sustainability.Peer reviewe

    Impacts of design configuration and plants on the functionality of the microbial community of mesocosm-scale constructed wetlands treating ibuprofen

    Get PDF
    Microbial degradation is an important pathway during the removal of pharmaceuticals in constructed wetlands (CWs). However, the effects of CW design, plant presence, and different plant species on the microbial community in CWs have not been fully explored. This study aims to investigate the microbial community metabolic function of different types of CWs used to treat ibuprofen via community-level physiological profiling (CLPP) analysis. We studied the interactions between three CW designs (unsaturated, saturated and aerated) and six types of mesocosms (one unplanted and five planted, with Juncus, Typha, Berula, Phragmites and Iris) treating synthetic wastewater. Results show that the microbial activity and metabolic richness found in the interstitial water and biofilm of the unsaturated designs were lower than those of the saturated and aerated designs. Compared to other CW designs, the aerated mesocosms had the highest microbial activity and metabolic richness in the interstitial water, but similar levels of biofilm microbial activity and metabolic richness to the saturated mesocosms. In all three designs, biofilm microbial metabolic richness was significantly higher (p < .05) than that of interstitial water. Both the interstitial water and biofilm microbial community metabolic function were influenced by CW design, plant presence and species, but design had a greater influence than plants. Moreover, canonical correlation analysis indicated that biofilm microbial communities in the three designs played a key role in ibuprofen degradation. The important factors identified as influencing ibuprofen removal were microbial AWCD (average well color development), microbial metabolic richness, and the utilization of amino acids and amine/amides. The enzymes associated with co-metabolism of l-arginine, l-phenyloalanine and putrescine may be linked to ibuprofen transformations. These results provide useful information for optimizing the operational parameters of CWs to improve ibuprofen removal
    corecore