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A constitutive model is presented for the in-plane mechanical behavior of nonwoven fabrics. The model is
developed within the context of the finite element method and provides the constitutive response for a
mesodomain of the fabric corresponding to the area associated to a finite element. The model is built
upon the ensemble of three blocks, namely fabric, fibers and damage. The continuum tensorial formula-
tion of the fabric response rigorously takes into account the effect of fiber rotation for large strains and
includes the nonlinear fiber behavior. In addition, the various damage mechanisms experimentally
observed (bond and fiber fracture, interfiber friction and fiber pull-out) are included in a phenomenolog-
ical way and the random nature of these materials is also taken into account by means of a Monte Carlo
lottery to determine the damage thresholds. The model results are validated with recent experimental
results on the tensile response of smooth and notched specimens of a polypropylene nonwoven fabric.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Nonwoven fabrics are structural materials manufactured from a
set of disordered fibers consolidated by bonds of different nature
(simple entanglement, local thermal fusion, chemical binders,
etc.). They are becoming more popular in many engineering appli-
cations (ballistic protection, thermal insulation, liquid-absorbing
textiles, fireproof layers, geotextiles, etc.) due to the lower process-
ing costs and improved properties (energy absorption), as com-
pared to woven counterparts. Moreover, new nonwoven
materials have emerged recently as a consequence of the advent
of fibers with reduced manipulability, such as nanotube sheets
(Berhan et al., 2004a,b; Berhan and Sastry, 2007) or nanofiber felts
directly produced by electrospinning (Dzenis, 2004).

Further optimization of the mechanical behavior of these mate-
rials requires a better understanding of the relationship between
microstructure and mechanical behavior which can only be
achieved through the development of physically-based constitu-
tive models. In addition to this, models are also necessary to pre-
dict the mechanical performance of structural elements.
Modeling a nonwoven fabric may be considered a daunting task
not only because of the randomness of the microstructure (very
different from the regular one found in woven or knitted textiles),
but also because of its particularly complex response, which often
includes large deformations and rotations, bond and fiber fracture,
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fiber sliding and a continuous rearrangement of the fiber network
topology.

The first attempt to model a nonwoven fabric was made by Cox
(1952). In this seminal work, aimed at studying the mechanical
behavior of paper, he considered a random network of long, elastic,
noninteracting fibers and was able to calculate its elastic constants
within a small-deformation framework. Cox’s contribution was ex-
tended by Kallmes and Corte (1960), who introduced the areal den-
sity of bonds and free fiber length using a geometrical probabilistic
theory. Most of the models following this line assume a shear-lag
transfer of load between fibers, which has proved successful for
predicting the tensile behavior of paper (Carlsson and Lindstrom,
2005). This approach is no longer accurate, however, when the load
is transferred through axial stresses at the fiber intersections
(Räisänen et al., 1997).

Backer and Petterson (1960) addressed the problem of the ten-
sile deformation of purely nonwoven assemblies by means of a lin-
ear elastic orthotropic model. Since simple orthotropic models do
not contain microstructural information, they were not able to
reproduce the effect of the microstructure’s evolution – in particu-
lar, fiber reorientation – and were therefore restricted to the small
strain regime. In order to enrich the fabric mechanics and take into
account the nonuniform fiber orientation, Bais-Singh and Goswami
(1995) and Liao et al. (1997) modeled the nonwoven fabric as a
stack of planar laminae, each of them containing fibers oriented
along one single direction. This way, they were able to predict
the effect of fiber orientation for small deformations although the
bonding between layers overconstrains the fiber rotation (allowed
only if the entire lamina rotates). In addition, Liao and Adanur
(1999) implemented a fiber failure criterion which rendered good
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Table 1
Density and parameters of the engineering stress–engineering strain curve of
polypropylene fibers extracted from the nonwoven fabric.

qf (g/cm3) Ef (GPa) sy
f (MPa) Hf (MPa) su

f (MPa) eu
f

0.91 1.7 ± 0.1 120 ± 4 59 ± 2 240 ± 10 1.4 ± 0.1
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agreement with the experimental results of two polyester fabrics
up to 20% strain.

Another class of model takes into account the actual micro-
structure by explicitly including the fiber network structure of
the fabric. Computationally costly though they are, they allow a
more realistic approximation of the micromechanisms involved
during deformation. This computational cost usually precludes
three-dimensional descriptions and limits the analyses to the in-
plane response, with the notable exception of the model by Termo-
nia (2003), whose aim was to study the bending of nonwoven lay-
ers. These models can essentially be divided into two sets. In the
first one, fibers are considered to be the fundamental constituents
of the nonwoven fabric and bonds are regarded as ‘‘indestructible’’
(Britton et al., 1983, 1984b,a; Wu and Dzenis, 2005), whereas the
second group is focused on the bond motion and evolution (Grind-
staff and Hansen, 1986; Jirsak and Lukas, 1991; Jirsak et al., 1993).
More recently, Ridruejo et al. (2010) simulated the behavior of a
glass–fiber nonwoven fabric through a finite element simulation
of the network in which the fiber yarns were explicitly repre-
sented. Following the experimental observations, fiber yarns did
not fail and bonds were responsible for the load transmission
and the eventual fabric failure. The role of friction between fiber
yarns after bond fracture was introduced through a stick–slip
law. Comparison with experiments provided very accurate results
in smooth and notched samples loaded in tension.

The problem of computational cost can be addressed by obtain-
ing the fabric properties using homogenization techniques over a
representative volume instead of the whole fabric. This approach
was first applied to nonwovens by Petterson (1959), who consid-
ered a set of straight fibers in a unit cell oriented according to a cer-
tain statistical distribution and linked by rigid bonds. The overall
deformation imposed on the fabric was accommodated by the fi-
bers in each unit cell following an affine transformation and the
angular integration of the fiber stress contributions provided the
stress normal to an arbitrary plane. This ‘‘fiber web model’’ in-
cluded the post-yield properties of the fibers and a weakest-link
treatment of the unit cell fracture. It was modified by Hearle and
Stevenson (1964), who introduced the effect of fiber curling, and
by Kothari and Patel (2001), who considered a time-dependent fi-
ber response, while Narter et al. (1999) extended the model to 3D.
Finally, other authors (Diani et al., 2004; Bischoff et al., 2002; Gas-
ser et al., 2006) developed constitutive models for nonwoven fab-
rics assuming a particular fiber distribution within the
representative volume element. The macroscopic response was de-
rived through a hyperelastic formulation where the strain energy
density function is obtained by adding the contributions from each
fiber. More recently Silberstein et al. (2012) have also developed an
elastic–plastic micromechanical model based on a multilayer tri-
angulated network. Within a slightly different frame, Planas et al.
(2007) presented a macroscopic model for fiber-reinforced materi-
als with deformable matrices based on the equivalence between
the virtual works of the fiber-reinforced and the equivalent contin-
uum media. These models based on homogenization have been
very useful for modeling and understanding the complex behavior
of nonwoven fabrics but they present two important limitations:
they can neither take into account the changes in the network
topology due to damage nor include the localization of damage
(a common problem associated with all homogenization schemes).

In this paper, a new constitutive model is presented for the in-
plane mechanical response of nonwoven fabrics. The model is
developed within the context of the finite element method and
provides the constitutive response for a mesodomain of the fabric
corresponding to the area associated to a finite element. Thus, the
computational cost is reasonable because it is not necessary to rep-
resent each fiber of the network but the localization of damage in
the fabric can be accounted for. The behavior of the fibers in the
mesodomain basically starts with Petterson’s assumptions (Petter-
son, 1959) by considering a set of noninteracting straight fibers
with an arbitrary initial orientation. The effect of fiber rotation
for large strains and the nonlinear fiber behavior are rigorously ta-
ken into account by the continuum tensorial formulation. In addi-
tion, the various damage mechanisms experimentally observed
(bond and fiber fracture, fiber friction and pull-out) are included
in the model in a phenomenological way and the random nature
of these materials, as well as the changes in fiber connectivity,
are also included by means of a Monte Carlo lottery to determine
the damage thresholds. The model results are validated against re-
cent experimental results on the tensile response of smooth and
notched specimens of a polypropylene nonwoven fabric (Ridruejo
et al., 2011).
2. Experimental background

The constitutive model developed in this paper is based on a de-
tailed experimental characterization of the deformation and failure
micromechanisms of a polypropylene nonwoven felt (Ridruejo
et al., 2011). The main results are briefly recalled here for the sake
of completion, as they stand for the model’s physical foundations.
The nonwoven fabric analyzed was a geotextile made of polypro-
pylene fibers of 40–60 lm in diameter. The continuous spun fibers
were then laid down randomly on a flat surface producing an iso-
tropic fiber web sheet which was then bonded by the simultaneous
application of pressure and heat, leading to partial fusion between
fibers at the entanglement points. The fabric areal density was
q = 118 ± 2 g/m2.

Individual fibers were extracted from the felts by carefully pull-
ing with tweezers and tested in tension. The engineering stress –
engineering strain curves (sf � ef ) were bilinear, the elastic region
being characterized by the elastic modulus Ef and the inelastic re-
gion by the hardening modulus Hf . Their values as well as those of
the engineering yield strength, sy

f , the engineering tensile strength,
su

f , and the strain-to-failure, eu
f are shown in Table 1, which pre-

sents the average values and the standard deviations correspond-
ing to 15 tests.

Uniaxial tensile tests of fabric rectangular specimens of 200 mm
width and 100 mm height were carried out under stroke control at
a cross-head speed of 0.8 mm/s. After a short linear region, the
curves presented marked nonlinear behavior and the maximum
load carrying capacity was attained at engineering strains of the
order of 30–40%. Afterwards, the gradual reduction of the stress
borne by the fabric was interrupted by one (or, sometimes, two)
abrupt reductions in stress, associated with the sudden localization
of damage. The curves presented a long tail as the stresses carried
by the fabric were reduced to zero at engineering strains above
100%. The deformation pattern at different stages during deforma-
tion is shown in Fig. 1.

Another set of tests was carried out on coupons of the same
dimensions with central notches whose length was equal to 20%,
40%, and 60% of the specimen width. It was found that the polypro-
pylene nonwoven fabric was notch insensitive and the shape of the
stress–strain curve was equivalent to the one observed in the
unnotched coupons regardless of the initial notch size: the maxi-
mum in the load-carrying capacity was attained after significant
nonlinear deformation and the samples presented an abrupt reduc-



Fig. 1. Deformation pattern of the rectangular specimen subjected to tensile deformation. (a) Far-field strain of 15% (77% of the maximum load). (b) Far-field strain of 25%
(94% of the maximum load). (c) Far-field strain of 46.5% (94% of the maximum load, after the peak). (d) Far-field strain of 47%, corresponding to the instant after localization of
fracture (32% of the maximum load).
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tion in strength after the peak load, followed by a long tail. The
deformation pattern of a notched coupon is shown in Fig. 2. The
large nonlinear deformation capability led to a complete blunting
of the crack, reducing the stress concentration at the tips. Load
was channeled through the ligaments in front of both notch tips,
without any noticeable difference in the mechanisms with respect
to the unnotched specimens.

The dominant deformation and damage phenomena at the
microscopic scale were ascertained by means of mechanical tests
inside an scanning electron microscope (Ridruejo et al., 2011). It
was found that damage began at very low strains by fracture of
interfiber bonds, which caused rearrangement of the fiber orienta-
tion and reduction in the fabric stiffness. This process (bond break-
age and fiber reorientation) continued upon loading, leading to a
marked nonlinearity in the stress–strain curve behavior. The max-
imum load was attained under these conditions without any evi-
dence of fiber fracture although fibers oriented in the loading
direction underwent plastic deformation. Further bond breakage
resulted in the localization of damage within the fabric, leading
to the development of a fracture zone of sparse fabric mainly made
up of fibers aligned in the loading direction. These mechanisms
were responsible for the considerable deformability and energy-
absorption capability of the fabric, which also presented excellent
strength and was notch-insensitive.
3. Constitutive model for the nonwoven fabric

The objective of this section is to develop a constitutive model
for the in-plane deformation of nonwoven fabrics which is able
to explicitly take into account the main deformation and failure
micromechanisms experimentally observed. Thus, the model
should account for the extensive fiber rotation, the elastic–plastic
deformation of the polypropylene fibers and progressive damage
due to interbond fracture, which leads to the localization of
fracture and to the re-arrangement of the fiber network. In order
to attain this goal, the model is made up of three blocks built on
top of each other: the network model, the fiber model and the
damage model. These are described below.

3.1. Fiber network model

The structure and deformation of the fiber network is taken into
account through a continuum model developed by Planas et al.
(2007), which constitutes a finite strain extension of the pioneering
work by Cox (1952). The model considers a square planar region of
arbitrary size containing a random network of long, straight, non-
interacting fibers. Each fiber is characterized by a unit vector N
(Fig. 3), which forms an angle H with respect to a privileged direc-
tion (e.g. the loading axis). This square planar region is considered
unloaded and is taken as our reference configuration.

If the square region is subjected to a certain imposed deforma-
tion, given by the deformation gradient tensor F, each fiber will de-
form according to its orientation. The fiber stretch, kf , is expressed as

kf ¼
l
l0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CN � N
p

ð1Þ

where l and l0 stand for the fiber length in the actual and reference
configuration, respectively, and C ¼ FTF is the right Cauchy-Green
strain tensor. Furthermore, the engineering stress sf carried by the
fibers will be a function of the fiber stretch as

sf ¼
T
X0
¼ sf ðkf Þ ð2Þ

where T is the longitudinal traction applied on the fiber and X0 the
initial fiber cross section. The mechanical power per unit volume of
fiber associated to the force T acting on the fiber is expressed as:

_x ¼ T_l
Xl
¼ T _kf

Xkf
ð3Þ



Fig. 2. Deformation pattern of the rectangular specimen with a central notch of 40% of the width subjected to tensile deformation. (a) Far-field strain of 10% (70% of the
maximum load). (b) Far-field strain of 33% (maximum load). (c) Far-field strain of 67% (70% of the maximum load, after the peak). (d) Far-field strain of 70%, corresponding to
the instant after localization of fracture (10% of the maximum load).

Fig. 3. Fiber network in the reference configuration.
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where X stands for the current fiber cross section. Assuming that
fiber deformation takes place without volume change (Xl ¼ X0l0)
and using Eq. (1), the mechanical power per unit volume of fiber,
_x can be written in the reference configuration as

_x ¼ sf ðkf Þ _kf ¼ sf ðkf Þ
_CN � N

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CN � N
p ð4Þ

Re-arranging terms following the rules of tensorial algebra, it
follows

_x ¼ tr sf ðkf Þ
ðN� NÞ _C
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CN �N
p

" #
ð5Þ

The extension of this expression to a fiber network can be carried
out easily by taking into account that the fabric is made up of sets
of fibers with different orientation. If WðHÞ is the fraction of fibers
forming an angle H (determined by NH) with the reference
direction, the mechanical power per unit volume of fibers in the
fabric, _xfabric, is given by

_xfabric ¼ tr
X
H

f H
f sH

f ðkf ÞWðHÞ
NH � NH
� �
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CNH �NH

p _C

2
4

3
5; ð6Þ

where ff is the volume fraction of the fibers.
Let us now consider a homogeneous solid, subjected to an arbi-

trary deformation given by C. The mechanical power per unit vol-
ume due to deformation can be written in the reference
configuration in terms of the second Piola–Kirchhoff stress tensor
as:

_x ¼ tr
1
2

S _C
� �

ð7Þ

and this homogeneous solid will be equivalent to the fabric in terms
of the mechanical power stored or dissipated by the system if

tr
1
2

S _C
� �

� tr
X
H

f H
f sH

f ðkf ÞWðHÞ
NH � NH
� �

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CNH � NH

p _C

2
4

3
5 ð8Þ

for all possible arbitrary deformations given by _C. This equivalence
is valid irrespectively of the conservative or nonconservative nature
of the forces. Thus, the constitutive behavior of the nonwoven fabric
can be expressed in terms of the second Piola–Kirchhoff stress ten-
sor as

S ¼
X
H

f H
f sH

f ðkf ÞWðHÞ
NH � NH
� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CNH �NH

p ð9Þ

where the information concerning fiber orientation should be also
provided in the reference configuration because the second Piola–
Kirchhoff stress tensor considers forces and areas in the reference
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configuration. In a more general case, the fiber orientation is given
by the planar orientation distribution function WðHÞ, defined as the
probability for a fiber to be oriented in the interval ðH;Hþ dHÞ.
Obviously,

1 ¼
Z p

2

�p
2

WðHÞdH ð10Þ

and WðHÞ ¼ 1=p in the case of an isotropic fabric. Therefore the con-
stitutive equation of the fabric can be expressed as

S ¼ ff

Z p
2

�p
2

sH
f ðkf ÞWðHÞ

NH � NH
� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CNH �NH

p dH ð11Þ

and the Cauchy stress tensor in the current (deformed) configura-
tion is given by

r ¼ 1
J

FSFT ð12Þ

where J, the Jacobian, is the determinant of F.
Another important outcome of the model is the degree of orien-

tation of the fibers within the fabric, characterized by the orienta-
tion index b:

b ¼
Z p

2

�p
2

FNH

FNH�� �� � e1WðHÞdH ð13Þ

where e1 is the unit vector along a privileged direction (e.g. the
loading axis). According to this definition, b is comprised in the
interval [0,1], where b = 0 implies that all fibers are oriented per-
pendicularly to the privileged direction e1 and b = 1 implies that
all the fibers are parallel to e1. An isotropic fiber distribution is char-
acterized by b ¼ 2=p � 0:64.

Since Eq. (11) holds for regions of arbitrary size (provided the
region is large enough to be representative of the microstructure),
the whole fabric can be decomposed into square mesodomains.
The mechanical response of mesodomain is given by Eq. (11) and
depends of the fiber properties and orientation. This decomposi-
tion is a key feature of the model, since it provides the ability to in-
clude gradients of field variables through interpolation – as in the
standard finite element method – in the analysis of the mechanical
deformation of the nonwoven felt while keeping record of the fiber
orientation. It is worth noting that the predictions of Cox’s model
in the case of homogeneous deformation can be recovered in the
case of small strains with linear elastic fibers.

3.2. Fiber model

The influence of the fiber properties on the mechanical perfor-
mance of the fabric is introduced in the constitutive model through
the nominal stress – stretch sf ðkf Þ function (Eq. 11). Following the
experimental results presented above, fibers were assumed to be-
have as one-dimensional, rate-independent, isotropic, elasto-plas-
tic solids with linear hardening. The total engineering strain can be
decomposed into the sum of an elastic (reversible) component, ee

f

and a plastic (permanent) one, ep
f :

ef ¼ ee
f þ ep

f ð14Þ

The elastic strains are related to the fiber stresses through the fiber
elastic modulus

sf ¼ Ef ef ¼ Ef ke
f � 1

� �
ð15Þ

while plastic deformation is controlled by the yield function U given
by

U ¼ sf � sy
f þ Hf �e

p
f

� �
ð16Þ
where sy
f and Hf stand, respectively, for the fiber yield strength and

the hardening modulus and �ep
f is the accumulated plastic strain,

which is computed as

�ep
f ¼

Z t

0
_ep

f dt: ð17Þ

The yield function discriminates between elastic and plastic re-
gimes according to

U < 0) _ep
f ¼ 0; ð18Þ

U ¼ 0)
_ep

f ¼ 0 for neutral loading

_ep
f > 0 for plastic loading

(
ð19Þ

If U > 0, the fiber abandons the elastic regime. An elastic trial for
the stress carried by the fiber at the instant t þ dt is computed as

stþdt;trial
f ¼ Ef et

f � �ep;t
f

� �
¼ st

f þ Ef Def ð20Þ

where st
f is the fiber stress at time t and Def the strain increment

corresponding to Dt. In the plastic regime, the elastic trial stress gi-
ven by Eq. (20) can be explicitly corrected according to (Simó and
Hughes, 1998):

stþdt
f ¼ stþdt;trial

f 1�
stþdt;trial

f � sy
f � Hf �e

p
f

� �
Ef

stþdt;trial
f Ef þ Hf

� 	
2
4

3
5 ¼ stþdt;trial

f 1� Pcð Þ

ð21Þ

The term Pc stands for ‘‘plastic corrector’’ and is used merely for the
sake of clarity. The equations for the fiber behavior presented above
are only valid for tensile stresses because of buckling under very
low compressive stresses. Thus, sf ¼ 0 whenever compressive stres-
ses are applied to the fibers.

3.3. Damage

Damage in thermally-consolidated nonwoven polypropylene
fabrics is mainly triggered by interfiber bond fracture. The first ef-
fect of bond fracture is to reduce the load carried by the fibers
crossing at the broken bond but it also changes the connectivity
of the network. Thus, further deformation gives rise to a re-
arrangement of the fiber network accompanied by extensive fiber
rotation, and fibers are eventually re-loaded as they become
aligned to the main loading axis. Finally, fiber fracture occurs in
the last stages of deformation well beyond the peak-load in the
stress–strain curve. It is evident that these mechanisms, involving
changes in the topology of the fiber network, cannot be explicitly
accounted for in a continuum model like the one presented here
and a phenomenological approach was adopted. This approach in-
cludes bond fracture through a continuum damage model in the fi-
bers based on the evidence that bond fracture leads to a reduction
in the stress carried by the fibers. Nevertheless, the model is imple-
mented in such a way that the load carried by damaged fibers can
increase at later stages of deformation to account for fiber reload-
ing once they become aligned to the main loading axis.

The one-dimensional damage model for the fibers is defined by
a loading function, ‘, a damage activation function, Ud, a damage
threshold variable, r and a damage value, d. The loading function,
‘, determines the onset of damage for a certain loading state, and
it is expressed as

‘ ¼ sf

b
ð22Þ

where b is the interfiber bond strength. The attempts to measure
the bond strength were not successful (Ridruejo et al., 2011), but
progressive bond fracture during deformation suggested a large
variability in bond strength. Thus, it was assumed that b followed
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a Weibull distribution, and the fracture probability of the bond p
was given by the cumulative distribution function:

p ¼ 1� exp � b� b0

B


 �m� �
ð23Þ

where b0 stands for the lower bound for the bond strength, and B
and m control the shape of the Weibull distribution. A Weibull dis-
tribution of this form was chosen because it is more flexible than
other distributions (e.g. a normal distribution). In particular, it al-
lowed to consider a lower threshold for the bond strength, as the
experimental observations suggested. Regardless of the statistical
distribution, it was assumed that b < su

f , the fiber tensile strength.
The damage activation function, Udð6 0Þ, analogous to the yield

function in plasticity, establishes the onset of damage and is given
by

Ud ¼ ‘� r ð24Þ

where r, the damage threshold variable, stores the magnitude of ‘ at
which damage increases. r = 1 for intact fibers and increases pro-
gressively with damage up to 1 when the fiber is completely
broken.

The evolution of damage follows the Kuhn-Tucker conditions,
which establish

Ud 6 0 and _r P 0 and _rUd ¼ 0 ð25Þ

If Ud < 0, the fiber behavior follows the elasto-plastic model pre-
sented in the previous section while damage is activated when
Ud ¼ 0 and the rate _‘ is to be evaluated. Negative values of _‘ corre-
spond to elastic unloading, which takes place without damage pro-
gress. If _‘ > 0, there is an increase in damage threshold _r, which is
determined by the consistency condition requiring that Ud ¼ 0 dur-
ing the whole damage process. Thus:

_Ud ¼ _‘� _r ¼ 0) _r ¼ _‘ ð26Þ

and an explicit expression of the damage threshold function r can
be obtained at each instant by the integration along the loading
path of the loading function rate ‘, leading to

r ¼max 1; maxf‘gf g ð27Þ

which makes the accumulative nature of damage evident.
Finally, an exponential damage law links the damage threshold

r and the damage value d according to

d ¼ 1� 1
r

exp½Að1� rÞ� ð28Þ

where the parameter A controls the area under the stress–strain
curve, i.e. the energy dissipated during fracture per unit volume
of fibers, gf . This energy is obtained by integrating the rate of dissi-
pation and the relationship between both magnitudes is given by

gf ¼
Z 1

0
b _d dt ¼

Z 1

1
b

d
r

dr ¼ ð2þ AÞb2

2Ef A
ð29Þ

In our phenomenological approach, gf represents the energy dissi-
pated during fiber deformation and the contributions due to fric-
tional sliding between fibers after bond fracture and to fiber pull-
out after fiber fracture. It is obvious that the total amount of energy
dissipated by these mechanisms cannot be estimated directly and
can only be inferred from the total amount of energy dissipated
by the fabric during a tensile test.

The practical implementation of this model is depicted in Fig. 4.
If damage is attained during the elastic regime (Fig. 4(a)), the elas-
tic trial stress in the fiber at the time t þ Dt; strial

f (> b) is given by
Eq. (20). This magnitude is used to compute the new damage
threshold rtþDt and the new damage variable dtþDt according to
Eqs. (26) to (28). The stress in the damaged material, stþDt

f , is
obtained as the secant line starting at the origin with a slope given
by Ef ð1� dtþDtÞ (Fig. 4(a)):

stþDt
f ¼ 1� dtþDt

� �
Ef etþDt

f

� �
¼ 1� dtþDt
� �

stþdt;trial
f ð30Þ

If damage begins in the plastic regime (Fig. 4(b)), the trial stress at
the time t þ Dt is obtained as

strial
f ¼ Ef etþDt

f � �ep;t
f

� �
ð31Þ

where �ep;t
f stands for the accumulated plastic strain at time t, and

the same procedure is used to update the values of the damage
threshold and of the damage variable dtþDt . The stress in the dam-
aged material, stþDt

f , is obtained as the line starting at �ep
f with a slope

given by Ef ð1� dtþDtÞ as (Fig. 4(b))

stþDt
f ¼ 1� dtþDt

� �
Ef etþDt

f � �ep;t
f

� �
¼ 1� dtþDt
� �

stþdt;trial
f ð32Þ

If at a certain time step the fiber is damaged, the accumulated plas-
tic strain is frozen (�ep;tþDt

f ¼ �ep;t
f ). One interesting feature that has to

be included in the damage model is that bond fracture may lead to
an initial reduction in the load carried by the fibers. Due to changes
in the connectivity of the fabric, however, fibers can be re-loaded at
later stages as the fabric deforms and fibers are subjected to large
rotations. One simple way to include this effect into the continuum
framework is to assume that the bond strength b is not constant but
may vary during deformation. Thus, the bond strength is computed
at each time increment using a Monte Carlo lottery and the Weibull
distribution of Eq. (23). If the bond strength is below the fiber trial
stress, the damage model presented above is used to determine the
increment of damage and the new stress carried by the fiber. Other-
wise, the fiber is reloaded and the elastic trial stress at time t þ Dt, is
given again by Eq. (20) (Fig. 4(c)). If this elastic trial stress is lower
than the current fiber yield stress (strial

f < ðsy
f þ Hf �e

p;t
f ), it has to be

corrected only for the previously accumulated damage dt and the
stress stþDt

f is expressed by

stþDt
f ¼ 1� dt

� �
Ef etþDt

f � �ep;t
f

� �
¼ 1� dt
� �

stþdt;trial
f ð33Þ

If strial
f P sy

f þ Hf �e
p;t
f (Fig. 4(d)), the fiber undergoes plastic deforma-

tion during reloading and the plastic correction has to be added,
leading to

stþDt
f ¼ 1� dt

� �
ð1� PcÞstþdt;trial

f ð34Þ

Some final remarks can be added for a better understanding of the
model. Firstly, damage is decoupled of the fiber plastic yielding.
Secondly, the Weibull distribution is usually associated to failure
analysis within the weakest link model. According to this model,
the probability of finding a critical defect leading to the failure de-
pends on the volume. This is not, however, the underlying hypoth-
esis in the damage model described here: the failure of a bond does
not imply the failure of the whole mesodomain and the bond
strength is not linked to the mesodomain area. Moreover, bonds
are subjected to variable levels of stress and the bond strength also
changes according to the Montecarlo lottery, so the fibers are
loaded and unloaded during deformation. All these facts reduce sig-
nificantly the sensitivity of damage with respect to the number of
Montecarlo draws. Thirdly, the whole model is formulated in total
strains, which ensures the consistency of damage growth. Finally, fi-
ber stresses are explicitly obtained by means of corrections from an
elastic trial (return mapping algorithm). The absence of additional
iterations reduces greatly the computational cost of the model
and offsets the time required to perform the angular integration
of Eq. (11).



Fig. 4. Damage model. (a) Damage in the elastic regime. (b) Damage in the plastic regime. (c) Reloading in the elastic regime. (d) Reloading in the plastic regime.

1 The VUMAT subroutine has a corotational formulation and the constitutive
equation is defined in a corotational coordinate system in which the reference system
rotates with the material. Thus, R = I in the corotational formulation because the
rotations contained in the deformation gradient F are cancelled by the rotation of the
reference system and

F ¼ RU ¼ U ð36Þ
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4. Numerical implementation

The constitutive model developed in the previous section was
implemented as a VUMAT subroutine in Abaqus/explicit. The
numerical simulations were carried out under plane stress condi-
tions within the framework of quasi-static deformations and large
displacements and rotations with the initial unstressed state taken
as reference. The equations of motion for the body were integrated
using an explicit central difference integration rule together with
the use of diagonal (‘‘lumped’’) element mass matrices. More de-
tails can be found in Abaqus (2008).

Rectangular specimens of 200 � 100 mm2 were discretized with
80 � 40 CPS4R bilinear plane stress elements, with reduced inte-
gration (1 Gauss point per element) and hourglass control. Selected
simulations were carried out with finer meshes (160 � 80 ele-
ments) to assess that the results were independent of the element
size. It should be noted that the minimum element size
(1.25 � 1.25 mm2) was much larger than the average free segment
between fiber intersections in the nonwoven and, thus, the mesod-
omains in the numerical model were large enough to be represen-
tative of the microstructure (Isaksson and Hägglund, 2009a,b;
Isaksson, 2010).

The boundary conditions of the coupons reproduced those of
the tensile tests in Section 2, in which the displacements on the
upper and lower boundaries were prescribed in both directions
according to

_uð0; yÞ ¼ 0; _uxðW; yÞ ¼ v; _uyðW; yÞ ¼ 0
Tðx;0Þ ¼ Tðx;HÞ ¼ 0; x – 0; x – W

ð35Þ

where T stands for the tractions applied to the specimen boundary
and v = 20 mm/s was the applied velocity on the upper boundary of
the cell. This speed was about twenty times higher than the exper-
imental one to reduce computing time. One simulation carried out
at v = 2 mm/s led to the same numerical results, demonstrating that
the dynamic effects due to the higher strain rate were negligible.

In each time increment, the explicit finite element analysis pro-
vides the VUMAT subroutine for each element the corresponding
right stretch tensor U.1

The fiber fabric in each element was assumed to be isotropic in
the reference configuration and is made up of 50 sets of fibers
whose orientation varies from �p=2 to p=2. The fiber stretch for
each set is computed as

kH
f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CNH �NH

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2NH � NH

p
ð37Þ

Once the increment of deformation in each fiber set has been ob-
tained, the bond strength b (equal for all fiber sets in the element)
is computed using a Monte Carlo lottery and Eq. (23). The elastic
trial stress is then computed for each fiber set according to Eq.
(20) and the development of damage is determined through Eq.
(24). If damage increases, the stress carried by the fiber set is given
by either Eqs. (30) or (32). Otherwise, the development of plastic
deformation is checked using Eqs. (18) and (19). If yielding occurs,
the stress carried by the fiber set is computed according to Eq. (34).
If not, the stress carried by the fiber set is computed with Eq. (33).



Fig. 5. Flow diagram of the VUMAT subroutine to simulate deformation and fracture of the nonwoven fabric.
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The corresponding flow diagram of the VUMAT subroutine is shown
in Fig. 5 for the sake of clarity.

Once the stress carried by each fiber set has been determined
(and the corresponding values of the accumulated plastic strain,
damage threshold and damage have been updated), they are added
following Eq. (11) to obtain the constitutive response of the fabric
at the element. It should be noted that Eq. (11) was derived using
an equivalence with the mechanical power per unit volume in a
homogeneous solid. In the particular case of a two-dimensional
fabric, the relevant quantities are derived per unit area of the fabric
and thus Eq. (11) has to be multiplied by the fabric thickness,
which is difficult to measure experimentally because it depends
on the applied pressure. Nevertheless, the product of the fiber vol-
ume fraction ff and the fabric thickness is equal to the ratio q=qf

(the areal density of the fabric divided by the density of the poly-
propylene fibers), which can be easily determined with an analyt-
ical balance (0.13 ± 0.02 mm, Section 2).

In addition to the overall stress carried by the fabric at each ele-
ment, an average damage variable D was computed as the average
value of the damage variable for all the fiber sets. The elements
with D > 0:99 were removed from the simulations as they were
practically broken and carried negligible stresses.

It is well known that the numerical implementation of damage
may lead mesh-dependent results because the energy dissipated is
a function of the element size. In order to overcome this limitation,
the damage evolution law is adjusted using a characteristic ele-
ment length, lch, so that the fracture energy GF is independent of
the refinement of the mesh (Bazant and Oh, 1983). Mathematically,
this condition is introduced as

GF ¼ gf lch ð38Þ

where lch is equal to the square root of the finite element area. Obvi-
ously, gf depends on the element size and this is introduced
through the parameter A, which is given by

A ¼ 2lchb2

2Ef GF � lchb2 ð39Þ

where the minimum size of the finite element is limited because the
denominator of Eq. (39) has to be positive.



Table 2
Parameters controlling the onset and propagation of damage in the nonwoven fabric.

b0 (MPa) B (MPa) m GF (kJ/m2)

20 360 3.6 550
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Finally, it should be noted that sudden fracture of the bonds
during the simulations introduced local instabilities in the form
of high frequency vibrations which impaired convergence. They
were eliminated by using bulk viscosity which introduces the pres-
sure term Pv associated with the volumetric strain rate according
to

Pv ¼ bdqcdlch _�vol; ð40Þ

where bd is a damping coefficient ð¼ 0:06Þ; cd the dilatational wave
speed in the material, and _�vol the volumetric strain rate. This vis-
cous pressure term damps the high frequency oscillations and for
this reason it is also known as ‘‘truncation frequency damping’’.
Rather counterintuitively, the presence of damping penalizes the
stable time increment to some extent, but it was necessary in order
to ensure accurate dynamic modeling.

The convergence and stability of the numerical approach was
checked by carrying out simulations with different values for the
time step (Dt), viscous damping (b) and loading rate (v). The nom-
inal stress–strain curves corresponding to different simulations
were equivalent in terms of the maximum load, strain-to-failure
and the shape of the post-peak stress–strain curve. In addition,
unstable solutions typically display oscillations of increasing
amplitude with time in the displacements and the energy balance
also changes significantly during the analysis. None of these oscil-
lations were observed. Moreover, all energy components other
than strain energy and frictional dissipation – in particular, artifi-
cial strain energy – were negligible.
5. Results and discussion

The model presented above was used to simulate the mechan-
ical behavior of the smooth and notched specimens of nonwoven
polypropylene fabric reported in Section 2. The density and the
mechanical properties of the fibers were obtained from tests on
individual fibers extracted from the fabric (see Table 1), while
the fabric density (118 g/m2) was also measured independently.
It was not possible, however, to experimentally determine the
parameters which control the onset and propagation of damage,
i.e. b0;B and m together with GF , which includes the energy dissi-
pated during fiber fracture as well as by interfiber friction and fiber
pull-out after fiber fracture. Although they were chosen to repro-
duce the experimental results on the smooth specimens (they
can be found in Table 2), their values are linked to variables that
can be measured independently. For instance, b0 dictates the stress
in the fibers at which damage by interfiber fracture began and its
low value leads to the initiation of damage at very low strains, in
agreement with the experimental results (Ridruejo et al. (2011)).
Moreover, b is always limited by the fiber strength, su

f and the frac-
ture energy, GF , controls the total energy dissipated during the ten-
sile test, which is related to the area under the nominal stress–
strain curve.2 In addition, to check the validity of these parameters,
they were used to reproduce the mechanical behavior of the notched
samples, where the stress state in front of the notch root is very dif-
ferent to the one found in smooth samples tested in uniaxial tension.

5.1. Smooth specimens

The numerical results of the nominal stress (force per unit
width) under uniaxial tension are plotted in Fig. 6(a) as a function
of the engineering strain for a smooth specimen of 200 � 100 mm2,
together with the corresponding experimental results. The four
2 The actual value of GF was thus selected to fit the post-peak behavior but it is not
a direct measure of the energy necessary to create a unit of crack surface because of
the features of the stochastic damage model.
numerical curves (plotted as thick lines) were obtained using the
same set of properties as for the nonwoven fabric. The differences
in the mechanical response after the onset of damage were due to
the stochastic nature of the model, in which bond strength is com-
puted at each time increment using a Monte Carlo lottery and the
Weibull distribution Eq. (23). It should be noted that the differ-
ences in the stress–strain curves among nominally identical
numerical simulations were similar to those reported experimen-
tally, showing the model’s ability to reproduce the random nature
of the nonwoven fabric. The four dashed lines in Fig. 6(b) corre-
spond to other numerical simulations carried out with the same
material parameters and boundary conditions but with finite ele-
ments whose area was four times smaller. These simulations, gen-
erally more costly from a computational viewpoint due to the
higher number of elements and to the reduction in the time step,
provided equivalent results in terms of maximum load, strain-to-
failure and post-peak response, although they presented more
scatter concerning the strain at which the load dropped. This dem-
onstrates that the results provided by the numerical model were
practically independent of the finite element size.

The features of the numerical curves reproduced very accu-
rately the experimental ones (Fig. 6(a)). The initial linear region
was followed by a nonlinear zone due to the homogeneous nucle-
ation of damage throughout the specimen by interbond fracture.
This process continued until a maximum in the load carrying capa-
bility was achieved (at engineering strains of the order of 30–40%),
and it was followed shortly afterwards by the localization of dam-
age. The load was not reduced to zero after the localization of dam-
age and the curves presented a long tail associated with the load
transferred by a limited number of fibers oriented parallel to the
loading axis. It should be noted that the numerical and experimen-
tal curves sometimes showed a serrated shape and the load carried
by the fabric increased slightly after a sudden load drop. This phe-
nomenon was caused in the real material by the re-organization of
the network topology after the fracture of interfiber bonds and it
was phenomenologically introduced in our model by the stochastic
variation of the interfiber bond strength b during deformation.

These mechanisms are in very good agreement with those ob-
served during in situ mechanical tests in the scanning electron
microscope (Ridruejo et al., 2011) and can be seen in the contour
plots of the average damage variable D (Fig. 7) and fiber orientation
index b (Fig. 8) corresponding to four different stages during defor-
mation marked as a, b, c and d in Fig. 6(a). Damage developed
homogeneously during the initial stages of deformation and was
slightly higher at the center and at the four corners. This was
due to the stress concentration induced in these regions by the bar-
reling effect and the boundary conditions on both ends on the
specimen, respectively (Fig. 7(a)). The onset of inhomogeneous
damage occurred near to the maximum load (Fig. 7(b)) and it
was found at the upper right corner of the specimen in this case.
Nevertheless, the actual localization of damage developed from an-
other corner of the specimen (Fig. 7(c)) and this behavior reflects
the stochastic nature of the model implemented. As a result, the
numerical simulations presented very similar stress–strain curves
up to the maximum load, whereas the after-peak response varied
as a function of the actual localization path. This behavior is equiv-
alent to the one reported experimentally and reproduces the scat-
ter arising from the stochastic nature of nonwoven fabrics. Once a
predominant localization began, it propagated very rapidly across
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Fig. 6. Nominal stress vs. engineering strain curves for unnotched specimens of 200 � 100 mm2 loaded in uniaxial tension. (a) Thick lines correspond to the numerical
simulations obtained with the constitutive model developed in this paper while the thin lines stand for the experimental results in Ridruejo et al. (2011). (b) Solid lines are the
same curves as in (a), whereas dashed lines represent simulations in which the area of each finite element was reduced by a factor of 4.

Fig. 7. Contour plot of the average damage variable D in the smooth specimen subjected to uniaxial tension. (a) Applied strain of 0.16, corresponding to point (a) in Fig. 6(a).
(b) Applied strain of 0.40, corresponding to point (b) in Fig. 6(a). (c) Applied strain of 0.53, corresponding to point (c) in Fig. 6(a). (d) Applied strain of 1.0, corresponding to
point (d) in Fig. 6(a). Elements with D > 0.93 were deleted for the sake of clarity.
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Fig. 8. Contour plot of the fiber orientation index b in the smooth specimen subjected to uniaxial tension. (a) Applied strain of 0.16, corresponding to point (a) in Fig. 6(a). (b)
Applied strain of 0.40, corresponding to point (b) in Fig. 6(a). (c) Applied strain of 0.53, corresponding to point (c) in Fig. 6(a). (d) Applied strain of 1.0, corresponding to point
(d) in Fig. 6(a). Elements with D > 0.93 were deleted for the sake of clarity.

Fig. 9. Contour plot of the accumulated plastic strain, �ep
f , in the fibers oriented parallel to the loading axis in the smooth specimen subjected to uniaxial tension. (a) Applied

strain of 0.16, corresponding to point (a) in Fig. 6(a). (b) Applied strain of 0.40, corresponding to point (b) in Fig. 6(a). (c) Applied strain of 0.53, corresponding to point (c) in
Fig. 6(a).
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the specimen but did not lead, however, to a brittle fracture. The
final crack was bridged by a few fabric filaments which led to a
long tail in the stress–strain curve.

The model was also able to take into account the progressive
reorientation of the fibers upon loading, as measured by parameter
b (Fig. 8). Fiber reorientation is minimum during the initial stages
of deformation (Fig. 8(a) and begins to be noticed near to the max-
imum load, particularly at the center and the corners of the speci-
men where the stresses and strains were maxima (Fig. 8(b)). This
smooth alignment of the fibers along the loading axis changes
abruptly when damage is localized in one corner, leading to a rapid
rotation of the fibers in the damaged region (Fig. 8(c)), followed by
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Fig. 10. Nominal stress vs. engineering strain curves for the specimen of
200 � 100 mm2 with an initial notch length of 40 mm loaded in uniaxial tension.
Thick lines correspond to the numerical simulations obtained with the constitutive
model developed in this paper while the thin lines stand for the experimental
results in Ridruejo et al. (2011).

Table 3
Average values of the nominal strength (in kN/m) as a function of the initial notch
length. The experimental results correspond to a minimum of 4 tests while the
numerical ones are the average of 3 simulations.

Notch length 0 0.2 W 0.4 W 0.6 W

Experiments 6.2 ± 0.1 5.2 ± 0.2 3.7 ± 0.2 2.4 ± 0.1
Simulations 6.32 ± 0.04 4.95 ± 0.12 3.70 ± 0.04 2.60 ± 0.04
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fiber fracture and the propagation of a crack across the specimen.
The fibers in fabric filaments bridging the final crack were com-
pletely aligned in the loading direction (Fig. 8(d)).

Finally, it is also interesting to analyze the evolution of the
plastic deformation in the fibers during deformation. The behav-
ior of each element is given by the average of the 50 fiber sets
with different orientation and the plastic strain of each fiber set
is different. Obviously, the highest stresses are borne by the fiber
sets parallel to the loading axis from the beginning, which also
undergo the largest plastic strains. The contour plot of the accu-
mulated plastic strain in these fiber sets, �ep

f , is plotted in Fig. 9
at different stages of deformation. They show that the plastic
deformation was initially distributed homogeneously (Fig. 9(a)
and it was concentrated in the corners and at isolated points
within the felt at the maximum load (Fig. 9(b)). Upon further
loading, plastic strain was localized in two strips perpendicular
to the loading axis, one starting from the upper-left corner of
the fabric and the other in the center of the specimen, which
coincided with the regions of localization of damage. The evolu-
tion of the plastic strain in these regions was controlled by the
localization of damage, which led to the formation of a dominant
crack from the upper-left corner of the felt. As a result, the spec-
imen was unloaded and the plastic strain throughout the speci-
men was frozen.
5.2. Notched specimens

The mechanical behavior of polypropylene nonwoven speci-
mens with the same dimensions and a central notch of 20%, 40%
and 60% of the total width was also simulated under uniaxial ten-
sion. The material parameters were those used in the analyses of
the smooth specimens and three simulations were carried out for
each geometry. The nominal stress vs. strain curves of the speci-
men with an initial notch of 0.4 W are plotted in Fig. 10, together
with the corresponding experimental results. The overall agree-
ment between the numerical simulations and the experimental re-
sults is very good. Besides, the model was able to capture the
maximum load-bearing capacity of the felt, the post-peak behavior
and the variability in the experimental curves due to the inherent
randomness of the material. Similar results were obtained for the
samples for initial notches of 0.2 and 0.6 W and they were not plot-
ted for the sake of brevity.

The average values of the nominal strength carried by smooth
and notch specimens is shown in Table 3. It is worth noting that
both the experimental results and the numerical model predict a
notch-insensitive behavior in which the reduction in the fabric
strength is proportional to the initial notch length. This behavior
has also been reported in nonwoven fabrics made up of brittle fi-
bers (Hägglund and Isaksson, 2006; Ridruejo et al., 2010) and it
was attributed to the felt randomness and the limited strain con-
centration in front of the notch tip induced by the sparse fiber net-
work structure. In the case of the polypropylene fabrics, notch
insensitiveness is caused by the large nonlinear deformation
capacity of the material, which leads to the complete blunting of
the notch tip before failure, as will be shown below.

In addition to the macroscopic behavior, it is also worth analyz-
ing the micromechanisms of damage in front of the notches where
the fabric is subjected to a stress state very different from uniaxial
tension. The contour plot of the average damage, D, is shown in
Fig. 11. Damage developed very early in front of the notch tips
and spread out from there to the lateral surfaces. This process
was accompanied by a progressive blunting of the notch tips and
by the localization of the strain in front of the notch, and both pro-
cesses were remarkably similar to the experimental behavior de-
picted in Fig. 2. The maximum load was dictated by the
weakening of the material in front of the notches but was attained
well before the elements in front of the notches were completely
broken (Fig. 11(b)). Localization of damage was more gradual in
the notched specimens, as compared to the smooth ones. Thus,
the reduction in the load-bearing capacity of the fabric with strain
was also slower and it should be noted that these differences
between smooth and notched specimens were also captured by
the numerical model. Final fracture occurred by the failure of the
fabric in front of the notch after the notch tips were completely
blunted (Fig. 11(d)). As in the case of smooth specimens, the final
cracks were bridged by a few fabric filaments which led to a long
tail in the stress–strain curve, in agreement with the experimental
observations (Figs. 2(c) and d).

The evolution of the fiber orientation is shown in Fig. 12 at dif-
ferent stages of deformation. The inhomogeneous stress state in-
duced by the presence of the notch leads to two very different
regions. On the one hand, the felt remained fairly isotropic above
and below the notch, where the stresses were very low, but the fi-
bers showed a slight trend to align perpendicularly to the loading
direction. On the other hand, fibers rapidly rotated and became
parallel to the loading axis in front of the notches. Again, this ori-
entation of the fibers perpendicular to the loading axis in front of
the notch was corroborated by the experimental observations
(Figs. 2(c) and (d)). Finally, the contour plots of the accumulated
plastic strain on the fibers showed the expected results, with fiber
plasticity concentrated in front of the notches. They are not plotted
for the sake of brevity.



Fig. 11. Contour plot of the average damage variable D in the notched specimen subjected to uniaxial tension. (a) Applied strain of 0.13, corresponding to point (a) in
Fig. 10(b). (b) Applied strain of 0.21, corresponding to point (b) in Fig. 10(b). (c) Applied strain of 0.30, corresponding to point (c) in Fig. 10(b). (d) Applied strain of 0.86,
corresponding to point (d) in Fig. 10(b). Elements with D > 0.93 were deleted for the sake of clarity.
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6. Conclusions

A physically-based continuum model was developed to simulate
the in-plane mechanical response of nonwoven fabrics. The model
provides the constitutive response of the material at the mesodo-
main level and it is thus suitable to be implemented as a material
subroutine within the framework of the finite element method.
The model is built upon the ensemble of three blocks, namely fabric,
fibers and damage to reproduce the actual mechanisms of deforma-
tion and fracture experimentally observed. The nonwoven fabric
model considers a set of non-interacting straight fibers with arbi-
trary orientation and uses a rigorous tensorial formulation valid
for large deformations and rotations to take into account the evolu-
tion of fiber orientation upon loading. The fiber model assumes an
elasto-plastic behavior which accurately reproduces the mechanical
response of polypropylene fibers. Finally, the effect fiber fracture, fi-
ber pull-out and friction are included in the model by means of a
continuum damage model, while the inherent randomness of the
nonwoven microstructure as well as the changes in the fabric topol-
ogy due to fracture of interfiber bonds are introduced phenomeno-
logically by means of random-variable damage thresholds.

The model was implemented in Abaqus/Explicit as a user mate-
rial subroutine and was used to simulate the behavior under uniax-
ial tension of smooth and notched rectangular specimens of a
polypropylene nonwoven fabric. The model parameters associated
with the fabric and fibers were carefully measured independently,
while those related to damage were chosen to reproduce the mac-
roscopic response of the smooth specimens. The model simulations
reproduced very accurately the nominal stress–strain curve of
smooth and notched samples, as well as the main deformation
and fracture micromechanisms, including the rotation of the fibers
in different areas of the fabric, the transition from homogeneous
deformation to the localization of damage and the final fracture.
These results show the potential of this physically-based model
to reproduce the complex deformation and fracture micromecha-
nisms of nonwoven fabrics.



Fig. 12. Contour plot of the fiber orientation index b in the notched specimen subjected to uniaxial tension. (a) Applied strain of 0.13, corresponding to point (a) in Fig. 10(b).
(b) Applied strain of 0.21, corresponding to point (b) in Fig. 10(b). (c) Applied strain of 0.30, corresponding to point (c) in Fig. 10(b). (d) Applied strain of 0.86, corresponding to
point (d) in Fig. 10(b). Elements with D > 0.93 were deleted for the sake of clarity.

2228 A. Ridruejo et al. / International Journal of Solids and Structures 49 (2012) 2215–2229
Acknowledgments

This investigation was supported by the Spanish Ministry of
Education and Science through Grant MAT2009-14396 and by
the Comunidad de Madrid through the Program ESTRUMAT
(S2009/MAT-1585).
References

Abaqus, 2008. Users’ Manual, version 6.7. ABAQUS, Inc.
Backer, S., Petterson, D., 1960. Some principles of nonwoven fabrics. Textile

Research Journal 30, 704–711.
Bais-Singh, S., Goswami, B.C., 1995. Theoretical determination of the mechanical

behavior of spun-bonded nonwovens. Journal of Textile Institute 86, 271–
288.

Bazant, Z., Oh, B.H., 1983. Crack band theory for fracture of concrete. Materials and
Structures 16, 155–177.

Berhan, L., Sastry, A., 2007. Modeling percolation in high-aspect-ratio fiber
systems. I. Soft-core versus hard-core models. Physical Review E 75,
041120–041128.

Berhan, L., Yi, Y.B., Sastry, A.M., 2004a. Effect of nanorope waviness on the effective
moduli of nanotube sheets. Journal of Applied Physics 95, 5027–5034.

Berhan, L., Yi, Y.B., Sastry, A.M., Munoz, E., Selvidge, M., Baughman, R., 2004b.
Mechanical properties of nanotube sheets: alterations in joint morphology and
achievable moduli in manufacturable materials. Journal of Applied Physics 95,
4335–4345.

Bischoff, J.E., Arruda, E.M., Grosh, K., 2002. Orthotropic hyperelasticity in terms of
an arbitrary molecular chain model. Journal of Applied Mechanics 69,
198–201.

Britton, P.N., Sampson, A.J., Elliott, C.F., Graben, H.W., Gettys, W.E., 1984a. Computer
simulation of the mechanical properties of nonwoven fabrics, Part III: fabric
failure. Textile Research Journal 54, 1–5.

Britton, P.N., Sampson, A.J., Gettys, W.E., 1983. Computer simulation of the
mechanical properties of nonwoven fabrics, Part I: the method. Textile
Research Journal 53, 363–368.

Britton, P.N., Sampson, A.J., Gettys, W.E., 1984b. Computer simulation of the
mechanical properties of nonwoven fabrics, Part II: bond breaking. Textile
Research Journal 54, 425–428.

Carlsson, L.A., Lindstrom, T., 2005. A shear-lag approach to the tensile strength of
paper. Composites Science and Technology 65, 183–189.

Cox, H.L., 1952. The elasticity and strength of paper and other fibrous materials.
British Journal of Applied Physics 3, 72–79.

Diani, J., Brieu, M., Vacherand, J.M., Rezgui, A., 2004. Directional model for isotropic
and anisotropic hyperelastic rubber-like materials. Mechanics of Materials 36,
313–321.

Dzenis, Y., 2004. Spinning continuous fibers for nanotechnology. Science 304, 1917–
1919.

Gasser, T.C., Ogden, R.W., Holzapfel, G.A., 2006. Hyperelastic modeling of arterial
layers with distributed collagen fiber orientations. Journal of the Royal Society
Interface 3, 15–35.

Grindstaff, T.H., Hansen, S.M., 1986. Computer model for predicting point-bonded
nonwoven fabric strength, Part I. Textile Research Journal 56, 383–388.



A. Ridruejo et al. / International Journal of Solids and Structures 49 (2012) 2215–2229 2229
Hägglund, R., Isaksson, P., 2006. Analysis of localized failure in low-basis weight
paper. International Journal of Solids and Structures 43, 5581–5592.

Hearle, J.W.S., Stevenson, P.J., 1964. Studies in nonwoven fabrics: Part IV: prediction
of tensile properties. Textile Research Journal 34, 181–191.

Isaksson, P., 2010. An implicit stress gradient plasticity model for describing
mechanical behavior of planar fiber networks on a macroscopic scale.
Engineering Fracture Mechanics 77 (8), 1240–1252.

Isaksson, P., Hägglund, R., 2009a. Strain energy distribution in a crack-tip region in
random fiber networks. International Journal of Fracture 156, 1–9.

Isaksson, P., Hägglund, R., 2009b. Structural effects on deformation and fracture of
random fiber networks and consequences on continuum models. International
Journal of Solids and Structures 46 (11–12), 2320–2329.

Jirsak, O., Lukas, D., 1991. Computer modeling of geotextiles related to mechanical
properties evaluated by micromechanoscopy. Geotextiles and Geomembranes
10 (2), 115–124.

Jirsak, O., Lukas, D., Charvat, R., 1993. A two-dimensional model of the mechanical
properties of textiles. Journal of the Textile Institute 84, 1–15.

Kallmes, O., Corte, H., 1960. The structure of paper I. The statistical geometry of an
ideal two dimensional fiber network. Tappi Journal 43, 737–752.

Kothari, V.K., Patel, P.C., 2001. Theoretical model for predicting creep behavior of
nonwoven fabrics. Indian Journal of Fibre & Textile Research 26, 273–279.

Liao, T., Adanur, S., 1999. Computerized failure analysis of nonwoven fabrics based
on fiber failure criterion. Textile Research Journal 69, 816–824.

Liao, T., Adanur, S., Drean, J.Y., 1997. Predicting the mechanical properties of
nonwoven geotextiles with the finite element method. Textile Research Journal
67, 753–760.
Narter, M.A., Batra, S.K., Buchanan, D.R., 1999. Micromechanics of three-
dimensional fiberwebs: constitutive equations. Proceedings of the Royal
Society of London A 455, 3543–3563.

Petterson, D.R., 1959. On the Mechanics of Nonwoven Fabrics. Ph.D. Thesis.
Massachusetts Institute of Technology.

Planas, J., Guinea, G.V., Elices, M., 2007. Constitutive model for fiber-reinforced
materials with deformable matrices. Physical Review E 76, 041903–041909.

Räisänen, V.I., Alava, M.J., Nieminen, R.M., Niskanen, K.J., 1997. Failure of planar
fiber networks. Journal of Applied Physics 82 (8), 3747–3753.

Ridruejo, A., González, C., LLorca, J., 2010. Damage micromechanisms and notch
sensitivity of glass–fiber non-woven felts: an experimental and numerical
study. Journal of the Mechanics and Physics of Solids 58, 1628–1645.

Ridruejo, A., González, C., LLorca, J., 2011. Micromechanisms of deformation and
fracture of polypropylene nonwoven fabrics. International Journal of Solids and
Structures 48, 153–162.

Silberstein, M.N., Pai, C.-L., Rutledge, G.C., Boyce, M.C., 2012. Elastic–plastic behavior
of non-woven fibrous mats. Journal of the Mechanics and Physics of Solids 60
(2), 295–318.

Simó, J., Hughes, T.J.R., 1998. Computational Inelasticity. Springer-Verlag.
Termonia, Y., 2003. Lattice model for the drape and bending properties of

nonwoven fabrics. Textile Research Journal 73, 74–78.
Wu, X.-F., Dzenis, Y.A., 2005. Elasticity of planar fiber networks. Journal of Applied

Physics 98, 093501.


	A constitutive model for the in-plane mechanical behavior of nonwoven fabrics
	1 Introduction
	2 Experimental background
	3 Constitutive model for the nonwoven fabric
	3.1 Fiber network model
	3.2 Fiber model
	3.3 Damage

	4 Numerical implementation
	5 Results and discussion
	5.1 Smooth specimens
	5.2 Notched specimens

	6 Conclusions
	Acknowledgments
	References


