30 research outputs found

    Can Generalist Foundation Models Outcompete Special-Purpose Tuning? Case Study in Medicine

    Full text link
    Generalist foundation models such as GPT-4 have displayed surprising capabilities in a wide variety of domains and tasks. Yet, there is a prevalent assumption that they cannot match specialist capabilities of fine-tuned models. For example, most explorations to date on medical competency benchmarks have leveraged domain-specific training, as exemplified by efforts on BioGPT and Med-PaLM. We build on a prior study of GPT-4's capabilities on medical challenge benchmarks in the absence of special training. Rather than using simple prompting to highlight the model's out-of-the-box capabilities, we perform a systematic exploration of prompt engineering. We find that prompting innovation can unlock deeper specialist capabilities and show that GPT-4 easily tops prior leading results for medical benchmarks. The prompting methods we explore are general purpose, and make no specific use of domain expertise, removing the need for expert-curated content. Our experimental design carefully controls for overfitting during the prompt engineering process. We introduce Medprompt, based on a composition of several prompting strategies. With Medprompt, GPT-4 achieves state-of-the-art results on all nine of the benchmark datasets in the MultiMedQA suite. The method outperforms leading specialist models such as Med-PaLM 2 by a significant margin with an order of magnitude fewer calls to the model. Steering GPT-4 with Medprompt achieves a 27% reduction in error rate on the MedQA dataset over the best methods to date achieved with specialist models and surpasses a score of 90% for the first time. Beyond medical problems, we show the power of Medprompt to generalize to other domains and provide evidence for the broad applicability of the approach via studies of the strategy on exams in electrical engineering, machine learning, philosophy, accounting, law, nursing, and clinical psychology.Comment: 21 pages, 7 figure

    Stellar Evolutionary Effects on the Abundances of PAH and SN-Condensed Dust in Galaxies

    Full text link
    Spectral and photometric observations of nearby galaxies show a correlation between the strength of their mid-IR aromatic features, attributed to PAH molecules, and their metal abundance, leading to a deficiency of these features in low-metallicity galaxies. In this paper, we suggest that the observed correlation represents a trend of PAH abundance with galactic age, reflecting the delayed injection of carbon dust into the ISM by AGB stars in the final post-AGB phase of their evolution. AGB stars are the primary sources of PAHs and carbon dust in galaxies, and recycle their ejecta back to the interstellar medium only after a few hundred million years of evolution on the main sequence. In contrast, more massive stars that explode as Type II supernovae inject their metals and dust almost instantaneously after their formation. We first determined the PAH abundance in galaxies by constructing detailed models of UV-to-radio SED of galaxies that estimate the contribution of dust in PAH-free HII regions, and PAHs and dust from photodissociation regions, to the IR emission. All model components: the galaxies' stellar content, properties of their HII regions, and their ionizing and non-ionizing radiation fields and dust abundances, are constrained by their observed multiwavelength spectrum. After determining the PAH and dust abundances in 35 nearby galaxies using our SED model, we use a chemical evolution model to show that the delayed injection of carbon dust by AGB stars provides a natural explanation to the dependence of the PAH content in galaxies with metallicity. We also show that larger dust particles giving rise to the far-IR emission follow a distinct evolutionary trend closely related to the injection of dust by massive stars into the ISM.Comment: ApJ, 69 pages, 46 figures, Accepte

    A HST/WFPC2 survey of bright young clusters in M31. I. VdB0, a massive star cluster seen at ~= 25 Myr

    Full text link
    {Aims.} We introduce our imaging survey of possible young massive globular clusters in M31 performed with the Wide Field and Planetary Camera 2 (WFPC2) on the Hubble Space Telescope (HST). We present here details of the data reduction pipeline that is being applied to all the survey data and describe its application to the brightest among our targets, van den Bergh 0 (VdB0), taken as a test case. {Methods.} The reddening, the age and the metallicity of the cluster are estimated by comparison of the observed Color Magnitude Diagram (CMD) with theoretical isochrones. {Results.} Under the most conservative assumptions the stellar mass of VdB0 is M > 2.4 x 10^4 M_sun, but our best estimates lie in the range ~ 4-9 x 10^4 M_sun. The CMD of VdB0 is best reproduced by models having solar metallicity and age = 25 Myr. Ages smaller than = 12 Myr and larger than = 60 Myr are clearly ruled out by the available data. The cluster has a remarkable number of Red Super Giants (> 18) and a CMD very similar to Large Magellanic Cloud clusters usually classified as young globulars such as NGC 1850, for example. {Conclusions.} VdB0 is significantly brighter (>~ 1 mag) than Galactic open clusters of similar age. Its present-day mass and half-light radius (r_h=7.4 pc) are more typical of faint globular clusters than of open clusters. However, given its position within the disk of M31 it is expected to be destroyed by dynamical effects, in particular by encounters with giant molecular clouds, within the next ~ 4 Gyr.Comment: 18 pages, 16 figures (quality of Figures 1,2,3 and 4 reduced). Accepted for publication in Astronomy & Astrophysics. Minor revisions to sect. 1.

    Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is the purpose of this article to identify and review criteria that rehabilitation technology should meet in order to offer arm-hand training to stroke patients, based on recent principles of motor learning.</p> <p>Methods</p> <p>A literature search was conducted in PubMed, MEDLINE, CINAHL, and EMBASE (1997–2007).</p> <p>Results</p> <p>One hundred and eighty seven scientific papers/book references were identified as being relevant. Rehabilitation approaches for upper limb training after stroke show to have shifted in the last decade from being analytical towards being focussed on environmentally contextual skill training (task-oriented training). Training programmes for enhancing motor skills use patient and goal-tailored exercise schedules and individual feedback on exercise performance. Therapist criteria for upper limb rehabilitation technology are suggested which are used to evaluate the strengths and weaknesses of a number of current technological systems.</p> <p>Conclusion</p> <p>This review shows that technology for supporting upper limb training after stroke needs to align with the evolution in rehabilitation training approaches of the last decade. A major challenge for related technological developments is to provide engaging patient-tailored task oriented arm-hand training in natural environments with patient-tailored feedback to support (re) learning of motor skills.</p

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]

    Oxygen and nitrogen abundances in nearby galaxies. Correlations between oxygen abundance and macroscopic properties

    Full text link
    We performed a compilation of more than 1000 published spectra of HII regions in spiral galaxies. The oxygen and nitrogen abundances in each HII region were recomputed in a homogeneous way, using the P-method. The radial distributions of oxygen and nitrogen abundances were derived. The correlations between oxygen abundance and macroscopic properties are examined. There is a significant difference between the L-Z relationship obtained here and that based on the oxygen abundances determined through the R_23-calibrations. The oxygen abundance of NGC 5457 recently determined using direct measurements of Te (Kennicutt, Bresolin & Garnett 2003) agrees with the L-Z relationship derived here, but is in conflict with the L-Z relationship derived with the R_23-based oxygen abundances. The obtained L-Z relation for spirals is compared to that for irregulars. Our sample of galaxies shows evidence that the slope of the O/H-M_B relationship for spirals is slightly more shallow than that for irregulars. The effective oxygen yields were estimated for spiral and irregular galaxies. The effective oxygen yield increases with increasing luminosity from M_B=-11 to M_B=-18 (or with increasing rotation velocity from Vrot=10 km/s to Vrot=100 km/s) and then remains approximately constant. Irregular galaxies from our sample have effective oxygen yields lowered by a factor of 3 at maximum, i.e. irregular galaxies usually keep at least 1/3 of the oxygen they manufactured during their evolution.Comment: Accepted for publication in Astronomy and Astrophysics (Figures 2-5, Tables 2,6 and Appendix will only be published in the electronic version of the Journal

    Predicting Gaming Related Properties from Twitter Accounts

    No full text
    We demonstrate a system for predicting gaming related properties from Twitter accounts. Our system predicts various traits of users based on the tweets publicly available in their profiles. Such inferred traits include degrees of tech-savviness and knowledge on computer games, actual gaming performance, preferred platform, degree of originality, humor and influence on others. Our system is based on machine learning models trained on crowd-sourced data. It allows people to select Twitter accounts of their fellow gamers, examine the trait predictions made by our system, and the main drivers of these predictions. We present empirical results on the performance of our system based on its accuracy on our crowd-sourced dataset
    corecore