104 research outputs found

    Understanding Radio-Selected Thermal Sources in M 33: Ultraviolet, Optical, Near-Infrared, Spitzer Mid-Infrared, and Radio Observations

    Full text link
    We present ultraviolet, optical, near-infrared, Spitzer mid-infrared, and radio images of 14 radio-selected objects in M 33. These objects are thought to represent the youngest phase of star cluster formation. We have detected the majority of cluster candidates in M 33 at all wavelengths. From the near-IR images, we derived ages 2-10 Myr, K_S-band extinctions (A_K_S) of 0-1 mag, and stellar masses of 10^3-10^4 M_solar. We have generated spectral energy distributions (SEDs) of each cluster from 0.1 micron to 160 microns. From these SEDs, we have modeled the dust emission around these star clusters to determine the dust masses (1-10^3 M_solar) and temperatures (40-90 K) of the clusters' local interstellar medium. Extinctions derived from the JHK_S, Halpha, and UV images are similar to within a factor of 2 or 3. These results suggest that eleven of the fourteen radio-selected objects are optically-visible young star clusters with a surrounding H II region, that two are background objects, possibly AGN, and that one is a Wolf-Rayet star with a surrounding H II region.Comment: 57 pages total; 20 figures; 3 tables under review by ApJS; first review complet

    PET Imaging of Microglia Using PBR28suv Determines Therapeutic Efficacy of Autologous Bone Marrow Mononuclear Cells Therapy in Traumatic Brain Injury

    Get PDF
    Traumatic brain injury (TBI) results in activated microglia. Activated microglia can be measured in vivo by using positron emission topography (PET) ligand peripheral benzodiazepine receptor standardized uptake values (PBR28suv). Cell based therapies have utilized autologous bone marrow mononuclear cells (BMMNCs) to attenuate activated microglia after TBI. This study aims to utilize in vivo PBR28suv to assess the efficacy of BMMNCs therapy after TBI. Seventy-two hours after CCI injury, BMMNCs were harvested from the tibia and injected via tail-vein at 74 h after injury at a concentration of 2 million cells per kilogram of body weight. There were three groups of rats: Sham, CCI-alone and CCI-BMMNCs (AUTO). One hundred twenty days after injury, rodents were imaged with PBR28 and their cognitive behavior assessed utilizing the Morris Water Maze. Subsequent ex vivo analysis included brain volume and immunohistochemistry. BMMNCs therapy attenuated PBR28suv in comparison to CCI alone and it improved spatial learning as measured by the Morris Water Maze. Ex vivo analysis demonstrated preservation of brain volume, a decrease in amoeboid-shaped microglia in the dentate gyrus and an increase in the ratio of ramified to amoeboid microglia in the thalamus. PBR28suv is a viable option to measure efficacy of BMMNCs therapy after TBI

    Planck 2013 results. XX. Cosmology from Sunyaev-Zeldovich cluster counts

    Get PDF
    We present constraints on cosmological parameters using number counts as a function of redshift for a sub-sample of 189 galaxy clusters from the Planck SZ (PSZ) catalogue. The PSZ is selected through the signature of the Sunyaev--Zeldovich (SZ) effect, and the sub-sample used here has a signal-to-noise threshold of seven, with each object confirmed as a cluster and all but one with a redshift estimate. We discuss the completeness of the sample and our construction of a likelihood analysis. Using a relation between mass MM and SZ signal YY calibrated to X-ray measurements, we derive constraints on the power spectrum amplitude σ8\sigma_8 and matter density parameter Ωm\Omega_{\mathrm{m}} in a flat Λ\LambdaCDM model. We test the robustness of our estimates and find that possible biases in the YY--MM relation and the halo mass function are larger than the statistical uncertainties from the cluster sample. Assuming the X-ray determined mass to be biased low relative to the true mass by between zero and 30%, motivated by comparison of the observed mass scaling relations to those from a set of numerical simulations, we find that σ8=0.75±0.03\sigma_8=0.75\pm 0.03, Ωm=0.29±0.02\Omega_{\mathrm{m}}=0.29\pm 0.02, and σ8(Ωm/0.27)0.3=0.764±0.025\sigma_8(\Omega_{\mathrm{m}}/0.27)^{0.3} = 0.764 \pm 0.025. The value of σ8\sigma_8 is degenerate with the mass bias; if the latter is fixed to a value of 20% we find σ8(Ωm/0.27)0.3=0.78±0.01\sigma_8(\Omega_{\mathrm{m}}/0.27)^{0.3}=0.78\pm 0.01 and a tighter one-dimensional range σ8=0.77±0.02\sigma_8=0.77\pm 0.02. We find that the larger values of σ8\sigma_8 and Ωm\Omega_{\mathrm{m}} preferred by Planck's measurements of the primary CMB anisotropies can be accommodated by a mass bias of about 40%. Alternatively, consistency with the primary CMB constraints can be achieved by inclusion of processes that suppress power on small scales relative to the Λ\LambdaCDM model, such as a component of massive neutrinos (abridged).Comment: 20 pages, accepted for publication by A&

    A História da Alimentação: balizas historiogråficas

    Full text link
    Os M. pretenderam traçar um quadro da HistĂłria da Alimentação, nĂŁo como um novo ramo epistemolĂłgico da disciplina, mas como um campo em desenvolvimento de prĂĄticas e atividades especializadas, incluindo pesquisa, formação, publicaçÔes, associaçÔes, encontros acadĂȘmicos, etc. Um breve relato das condiçÔes em que tal campo se assentou faz-se preceder de um panorama dos estudos de alimentação e temas correia tos, em geral, segundo cinco abardagens Ia biolĂłgica, a econĂŽmica, a social, a cultural e a filosĂłfica!, assim como da identificação das contribuiçÔes mais relevantes da Antropologia, Arqueologia, Sociologia e Geografia. A fim de comentar a multiforme e volumosa bibliografia histĂłrica, foi ela organizada segundo critĂ©rios morfolĂłgicos. A seguir, alguns tĂłpicos importantes mereceram tratamento Ă  parte: a fome, o alimento e o domĂ­nio religioso, as descobertas europĂ©ias e a difusĂŁo mundial de alimentos, gosto e gastronomia. O artigo se encerra com um rĂĄpido balanço crĂ­tico da historiografia brasileira sobre o tema

    Human-derived Treg and MSC combination therapy may augment immunosuppressive potency in vitro, but did not improve blood brain barrier integrity in an experimental rat traumatic brain injury model.

    No full text
    Traumatic brain injury (TBI) causes both physical disruption of the blood brain barrier (BBB) and altered immune responses that can lead to significant secondary brain injury and chronic inflammation within the central nervous system (CNS). Cell therapies, including mesenchymal stromal cells (MSC), have been shown to restore BBB integrity and augment endogenous splenic regulatory T cells (Treg), a subset of CD4+ T cells that function to regulate immune responses and prevent autoimmunity. We have recently shown that infusion of human cord blood-derived Treg decreased neuroinflammation after TBI in vivo and in vitro. However, while both cells have demonstrated anti-inflammatory and regenerative potential, they likely utilize differing, although potentially overlapping, mechanisms. Furthermore, studies investigating these two cell types together, as a combination therapy, are lacking. In this study, we compared the ability of Treg+MSC combination therapy, as well as MSC and Treg monotherapies, to improve BBB permeability in vivo and suppress inflammation in vitro. While Treg+MSC combination did not significantly augment potency in vivo, our in vitro data demonstrates that combination therapy may augment therapeutic potency and immunosuppressive potential compared to Treg or MSC monotherapy
    • 

    corecore