481 research outputs found
Does the Third Law of Thermodynamics hold in the Quantum Regime?
The first in a long series of papers by John T. Lewis,
G. W. Ford and the present author, considered the problem of the most general
coupling of a quantum particle to a linear passive heat bath, in the course of
which they derived an exact formula for the free energy of an oscillator
coupled to a heat bath in thermal equilibrium at temperature T. This formula,
and its later extension to three dimensions to incorporate a magnetic field,
has proved to be invaluable in analyzing problems in quantum thermodynamics.
Here, we address the question raised in our title viz. Nernst's third law of
thermodynamics
Impact of the tip radius on the lateral resolution in piezoresponse force microscopy
We present a quantitative investigation of the impact of tip radius as well
as sample type and thickness on the lateral resolution in piezoresponse force
microscopy (PFM) investigating bulk single crystals. The observed linear
dependence of the width of the domain wall on the tip radius as well as the
independence of the lateral resolution on the specific crystal-type are
validated by a simple theoretical model. Using a Ti-Pt-coated tip with a
nominal radius of 15 nm the so far highest lateral resolution in bulk crystals
of only 17 nm was obtained
Breakdown of the Landauer bound for information erasure in the quantum regime
A known aspect of the Clausius inequality is that an equilibrium system
subjected to a squeezing \d S of its entropy must release at least an amount
|\dbarrm Q|=T|\d S| of heat. This serves as a basis for the Landauer
principle, which puts a lower bound for the heat generated by erasure
of one bit of information. Here we show that in the world of quantum
entanglement this law is broken. A quantum Brownian particle interacting with
its thermal bath can either generate less heat or even {\it adsorb} heat during
an analogous squeezing process, due to entanglement with the bath. The effect
exists even for weak but fixed coupling with the bath, provided that
temperature is low enough. This invalidates the Landauer bound in the quantum
regime, and suggests that quantum carriers of information can be much more
efficient than assumed so far.Comment: 13 pages, revtex, 2 eps figure
The signer and the sign: Cortical correlates of person identity and language processing from point-light displays
In this study, the first to explore the cortical correlates of signed language (SL) processing under point-light display conditions, the observer identified either a signer or a lexical sign from a display in which different signers were seen producing a number of different individual signs. many of the regions activated by point-light under these conditions replicated those previously reported for full-image displays, including regions within the inferior temporal cortex that are specialised for face and body-part identification, although such body parts were invisible in the display. Right frontal regions were also recruited - a pattern not usually seen in full-image SL processing. This activation may reflect the recruitment of information about person identity from the reduced display. A direct comparison of identify-signer and identify-sign conditions showed these tasks relied to a different extent on the posterior inferior regions. Signer identification elicited greater activation than sign identification in (bilateral) inferior temporal gyri (BA 37/19), fusiform gyri (BA 37), middle and posterior portions of the middle temporal gyri (BAs 37 and 19), and superior temporal gyri (BA 22 and 42). Right inferior frontal cortex was a further focus of differential activation (signer > sign).These findings suggest that the neural systems supporting point-light displays for the processing of SL rely on a cortical network including areas of the inferior temporal cortex specialized for face and body identification. While this might be predicted from other studies of whole body point-light actions (Vaina, Solomon, Chowdhury, Sinha, & Belliveau, 2001) it is not predicted from the perspective of spoken language processing, where voice characteristics and speech content recruit distinct cortical regions (Stevens, 2004) in addition to a common network. In this respect, our findings contrast with studies of voice/speech recognition (Von Kriegstein, Kleinschmidt, Sterzer, & Giraud, 2005). Inferior temporal regions associated with the visual recognition of a person appear to be required during SL processing, for both carrier and content information. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved
Come back Marshall, all is forgiven? : Complexity, evolution, mathematics and Marshallian exceptionalism
Marshall was the great synthesiser of neoclassical economics. Yet with his qualified assumption of self-interest, his emphasis on variation in economic evolution and his cautious attitude to the use of mathematics, Marshall differs fundamentally from other leading neoclassical contemporaries. Metaphors inspire more specific analogies and ontological assumptions, and Marshall used the guiding metaphor of Spencerian evolution. But unfortunately, the further development of a Marshallian evolutionary approach was undermined in part by theoretical problems within Spencer's theory. Yet some things can be salvaged from the Marshallian evolutionary vision. They may even be placed in a more viable Darwinian framework.Peer reviewedFinal Accepted Versio
How does visual language affect crossmodal plasticity and cochlear implant success?
Cochlear implants (CI) are the most successful intervention for ameliorating hearing loss in severely or profoundly deaf children. Despite this, educational performance in children with CI continues to lag behind their hearing peers. From animal models and human neuroimaging studies it has been proposed the integrative functions of auditory cortex are compromised by crossmodal plasticity. This has been argued to result partly from the use of a visual language. Here we argue that 'cochlear implant sensitive periods' comprise both auditory and language sensitive periods, and thus cannot be fully described with animal models. Despite prevailing assumptions, there is no evidence to link the use of a visual language to poorer CI outcome. Crossmodal reorganisation of auditory cortex occurs regardless of compensatory strategies, such as sign language, used by the deaf person. In contrast, language deprivation during early sensitive periods has been repeatedly linked to poor language outcomes. Language sensitive periods have largely been ignored when considering variation in CI outcome, leading to ill-founded recommendations concerning visual language in CI habilitation
Audiovisual Non-Verbal Dynamic Faces Elicit Converging fMRI and ERP Responses
In an everyday social interaction we automatically integrate anotherâs facial movements and vocalizations, be they linguistic or otherwise. This requires audiovisual integration of a continual barrage of sensory inputâa phenomenon previously well-studied with human audiovisual speech, but not with non-verbal vocalizations. Using both fMRI and ERPs, we assessed neural activity to viewing and listening to an animated female face producing non-verbal, human vocalizations (i.e. coughing, sneezing) under audio-only (AUD), visual-only (VIS) and audiovisual (AV) stimulus conditions, alternating with Rest (R). Underadditive effects occurred in regions dominant for sensory processing, which showed AV activation greater than the dominant modality alone. Right posterior temporal and parietal regions showed an AV maximum in which AV activation was greater than either modality alone, but not greater than the sum of the unisensory conditions. Other frontal and parietal regions showed Common-activation in which AV activation was the same as one or both unisensory conditions. ERP data showed an early superadditive effect (AVÂ >Â AUDÂ +Â VIS, no rest), mid-range underadditive effects for auditory N140 and face-sensitive N170, and late AV maximum and common-activation effects. Based on convergence between fMRI and ERP data, we propose a mechanism where a multisensory stimulus may be signaled or facilitated as early as 60Â ms and facilitated in sensory-specific regions by increasing processing speed (at N170) and efficiency (decreasing amplitude in auditory and face-sensitive cortical activation and ERPs). Finally, higher-order processes are also altered, but in a more complex fashion
- âŠ