1,185 research outputs found

    What Happened to the First Amendment: The \u3ci\u3eMetromedia\u3c/i\u3e Case

    Get PDF

    A longer vernal window: The role of winter coldness and snowpack in driving spring thresholds and lags

    Get PDF
    Climate change is altering the timing and duration of the vernal window, a period that marks the end of winter and the start of the growing season when rapid transitions in ecosystem energy, water, nutrient, and carbon dynamics take place. Research on this period typically captures only a portion of the ecosystem in transition and focuses largely on the dates by which the system wakes up. Previous work has not addressed lags between transitions that represent delays in energy, water, nutrient, and carbon flows. The objectives of this study were to establish the sequence of physical and biogeochemical transitions and lags during the vernal window period and to understand how climate change may alter them. We synthesized observations from a statewide sensor network in New Hampshire, USA, that concurrently monitored climate, snow, soils, and streams over a three-year period and supplemented these observations with climate reanalysis data, snow data assimilation model output, and satellite spectral data. We found that some of the transitions that occurred within the vernal window were sequential, with air temperatures warming prior to snow melt, which preceded forest canopy closure. Other transitions were simultaneous with one another and had zero-length lags, such as snowpack disappearance, rapid soil warming, and peak stream discharge. We modeled lags as a function of both winter coldness and snow depth, both of which are expected to decline with climate change. Warmer winters with less snow resulted in longer lags and a more protracted vernal window. This lengthening of individual lags and of the entire vernal window carries important consequences for the thermodynamics and biogeochemistry of ecosystems, both during the winter-to-spring transition and throughout the rest of the year

    Improving detection and management of atrial fibrillation after ischaemic stroke in Glasgow (IMPROVE-AF): a quality improvement project

    Get PDF
    Introduction: The use of cardiac monitoring to detect atrial fibrillation (AF) is routine after ischaemic stroke but is often delayed leaving patients at risk from undetected AF. We sought to improve the detection of AF by delivering early prolonged ‘in-house’ cardiac monitoring. Patients and methods: We collected 3-months of data of people with stroke/transient ischaemic attack (TIA), but without AF, who underwent cardiac monitoring (Phase 1, pre-quality improvement project (QIP)). We then implemented an ‘in-house’ 7-day cardiac monitoring service for 12 months (Phase 2, during QIP). Results: We included 244 people in Phase 1 and 172 in Phase 2. In Phase 1, 232 (95%) people completed cardiac monitoring. Of these, new AF was detected in 10 (4%). Median time from stroke/TIA onset to availability of the monitoring report in Phase 1 was 50 (interquartile range (IQR): 24–123) days. In Phase 2, 166 (97%) of people completed 7-day cardiac monitoring, with new AF detected in 17 (10%). Median time from onset to availability of the report in Phase 2 was 12 (IQR: 9–15) days. In people with AF detected, ‘in-house’ monitoring reduced the time of stroke/TIA onset to anticoagulant commencement from 41 (Phase 1) to 14 (Phase 2) days. Conclusions: The QIP has improved AF detection, reduced delays associated with conventional cardiac monitoring and prompted early initiation of oral anticoagulation

    The Adolescent Cardio-Renal Intervention Trial (AdDIT): retinal vascular geometry and renal function in adolescents with type 1 diabetes

    Get PDF
    Aims/hypothesis We examined the hypothesis that elevation in urinary albumin creatinine ratio (ACR) in adolescents with type 1 diabetes is associated with abnormal retinal vascular geometry (RVG) phenotypes. Methods A cross-sectional study at baseline of the relationship between ACR within the normoalbuminuric range and RVG in 963 adolescents aged 14.4 ± 1.6 years with type 1 diabetes (median duration 6.5 years) screened for participation in AdDIT. A validated algorithm was used to categorise log10 ACR into tertiles: upper tertile ACR was defined as ‘high-risk’ for future albuminuria and the lower two tertiles were deemed ‘low-risk’. RVG analysis, using a semi-automated computer program, determined retinal vascular calibres (standard and extended zones) and tortuosity. RVG measures were analysed continuously and categorically (in quintiles: Q1–Q5) for associations with log10 ACR and ACR risk groups. Results Greater log10 ACR was associated with narrower vessel calibres and greater tortuosity. The high-risk group was more likely to have extended zone vessel calibres in the lowest quintile (arteriolar Q1 vs Q2–Q5: OR 1.67 [95% CI 1.17, 2.38] and venular OR 1.39 [0.98, 1.99]) and tortuosity in the highest quintile (Q5 vs Q1–Q4: arteriolar OR 2.05 [1.44, 2.92] and venular OR 2.38 [1.67, 3.40]). The effects of retinal vascular calibres and tortuosity were additive such that the participants with the narrowest and most tortuous vessels were more likely to be in the high-risk group (OR 3.32 [1.84, 5.96]). These effects were independent of duration, blood pressure, BMI and blood glucose control. Conclusions/interpretation Higher ACR in adolescents is associated with narrower and more tortuous retinal vessels. Therefore, RVG phenotypes may serve to identify populations at high risk of diabetes complications during adolescence and well before onset of clinical diabetes complications.This work was supported by the National Health and Medical Research Council of Australia (NHMRC 632521), JDRF (08-2007-902), Diabetes UK (DUK PO NO 2177 BDA:RD06/003341) and the British Heart Foundation

    Stable reference genes for the measurement of transcript abundance during larval caste development in the honeybee

    Get PDF
    Many genes are differentially regulated by caste development in the honeybee. Identifying and understanding these differences is key to discovering the mechanisms underlying this process. To identify these gene expression differences requires robust methods to measure transcript abundance. RT-qPCR is currently the gold standard to measure gene expression, but requires stable reference genes to compare gene expression changes. Such reference genes have not been established for honeybee caste development. Here, we identify and test potential reference genes that have stable expression throughout larval development between the two female castes. In this study, 15 candidate reference genes were examined to identify the most stable reference genes. Three algorithms (GeNorm, Bestkeeper and NormFinder) were used to rank the candidate reference genes based on their stability between the castes throughout larval development. Of these genes Ndufa8 (the orthologue of a component of complex one of the mitochondrial electron transport chain) and Pros54 (orthologous to a component of the 26S proteasome) were identified as being the most stable. When these two genes were used to normalise expression of two target genes (previously found to be differentially expressed between queen and worker larvae by microarray analysis) they were able to more accurately detect differential expression than two previously used reference genes (awd and RpL12). The identification of these novel reference genes will be of benefit to future studies of caste development in the honeybee

    What turns galaxies off? The different morphologies of star-forming and quiescent galaxies since z~2 from CANDELS

    Get PDF
    We use HST/WFC3 imaging from the CANDELS Multicycle Treasury Survey, in conjunction with the Sloan Digital Sky Survey, to explore the evolution of galactic structure for galaxies with stellar masses >3e10M_sun from z=2.2 to the present epoch, a time span of 10Gyr. We explore the relationship between rest-frame optical color, stellar mass, star formation activity and galaxy structure. We confirm the dramatic increase from z=2.2 to the present day in the number density of non-star-forming galaxies above 3e10M_sun reported by others. We further find that the vast majority of these quiescent systems have concentrated light profiles, as parametrized by the Sersic index, and the population of concentrated galaxies grows similarly rapidly. We examine the joint distribution of star formation activity, Sersic index, stellar mass, inferred velocity dispersion, and stellar surface density. Quiescence correlates poorly with stellar mass at all z<2.2. Quiescence correlates well with Sersic index at all redshifts. Quiescence correlates well with `velocity dispersion' and stellar surface density at z>1.3, and somewhat less well at lower redshifts. Yet, there is significant scatter between quiescence and galaxy structure: while the vast majority of quiescent galaxies have prominent bulges, many of them have significant disks, and a number of bulge-dominated galaxies have significant star formation. Noting the rarity of quiescent galaxies without prominent bulges, we argue that a prominent bulge (and perhaps, by association, a supermassive black hole) is an important condition for quenching star formation on galactic scales over the last 10Gyr, in qualitative agreement with the AGN feedback paradigm.Comment: The Astrophysical Journal, in press; 20 pages with 13 figure

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    Sleep assessment in a population-based study of chronic fatigue syndrome

    Get PDF
    BACKGROUND: Chronic fatigue syndrome (CFS) is a disabling condition that affects approximately 800,000 adult Americans. The pathophysiology remains unknown and there are no diagnostic markers or characteristic physical signs or laboratory abnormalities. Most CFS patients complain of unrefreshing sleep and many of the postulated etiologies of CFS affect sleep. Conversely, many sleep disorders present similarly to CFS. Few studies characterizing sleep in unselected CFS subjects have been published and none have been performed in cases identified from population-based studies. METHODS: The study included 339 subjects (mean age 45.8 years, 77% female, 94.1% white) identified through telephone screen in a previously described population-based study of CFS in Wichita, Kansas. They completed questionnaires to assess fatigue and wellness and 2 self-administered sleep questionnaires. Scores for five of the six sleep factors (insomnia/hypersomnia, non-restorative sleep, excessive daytime somnolence, sleep apnea, and restlessness) in the Centre for Sleep and Chronobiology's Sleep Assessment Questionnaire(© )(SAQ(©)) were dichotomized based on threshold. The Epworth Sleepiness Scale score was used as a continuous variable. RESULTS: 81.4% of subjects had an abnormality in at least one SAQ(© )sleep factor. Subjects with sleep factor abnormalities had significantly lower wellness scores but statistically unchanged fatigue severity scores compared to those without SAQ(© )abnormality. CFS subjects had significantly increased risk of abnormal scores in the non-restorative (adjusted odds ratio [OR] = 28.1; 95% confidence interval [CI]= 7.4–107.0) and restlessness (OR = 16.0; 95% CI = 4.2–61.6) SAQ(© )factors compared to non-fatigued, but not for factors of sleep apnea or excessive daytime somnolence. This is consistent with studies finding that, while fatigued, CFS subjects are not sleepy. A strong correlation (0.78) of Epworth score was found only for the excessive daytime somnolence factor. CONCLUSIONS: SAQ(© )factors describe sleep abnormalities associated with CFS and provide more information than the Epworth score. Validation of these promising results will require formal polysomnographic sleep studies
    • …
    corecore