40 research outputs found

    Non-equivalence of Wnt and R-spondin ligands during Lgr5+ intestinal stem-cell self-renewal

    Get PDF
    The canonical Wnt/β-catenin signaling pathway governs diverse developmental, homeostatic and pathologic processes. Palmitoylated Wnt ligands engage cell surface Frizzled (Fzd) receptors and Lrp5/6 co-receptors enabling β-catenin nuclear translocation and Tcf/Lef-dependent gene transactivation1–3. Mutations in Wnt downstream signaling components have revealed diverse functions presumptively attributed to Wnt ligands themselves, although direct attribution remains elusive, as complicated by redundancy between 19 mammalian Wnts and 10 Fzds1 and Wnt hydrophobicity2,3. For example, individual Wnt ligand mutations have not revealed homeostatic phenotypes in the intestinal epithelium4, an archetypal canonical Wnt pathway-dependent rapidly self-renewing tissue whose regeneration is fueled by proliferative crypt Lgr5+ intestinal stem cells (ISCs)5–9. R-spondin ligands (Rspo1–4) engage distinct Lgr4-6 and Rnf43/Znrf3 receptor classes10–13, markedly potentiate canonical Wnt/β-catenin signaling and induce intestinal organoid growth in vitro and Lgr5+ ISCs in vivo8,14–17. However, the interchangeability, functional cooperation and relative contributions of Wnt versus Rspo ligands to in vivo canonical Wnt signaling and ISC biology remain unknown. Here, we deconstructed functional roles of Wnt versus Rspo ligands in the intestinal crypt stem cell niche. We demonstrate that the default fate of Lgr5+ ISCs is lineage commitment, escape from which requires both Rspo and Wnt ligands. However, gain-of-function studies using Rspo versus a novel non-lipidated Wnt analog reveal qualitatively distinct, non-interchangeable roles for these ligands in ISCs. Wnts are insufficient to induce Lgr5+ ISC self-renewal, but rather confer a basal competency by maintaining Rspo receptor expression that enables Rspo to actively drive and specify the extent of stem cell expansion. This functionally non-equivalent yet cooperative interplay between Wnt and Rspo ligands establishes a molecular precedent for regulation of mammalian stem cells by distinct priming and self-renewal factors, with broad implications for precision control of tissue regeneration

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    96 weeks treatment of tenofovir alafenamide vs. tenofovir disoproxil fumarate for hepatitis B virus infection

    No full text
    Background &amp; Aims: Tenofovir alafenamide (TAF) is a new prodrug of tenofovir developed to treat patients with chronic hepatitis B virus (HBV) infection at a lower dose than tenofovir disoproxil fumarate (TDF) through more efficient delivery of tenofovir to hepatocytes. In 48-week results from two ongoing, double-blind, randomized phase III trials, TAF was non-inferior to TDF in efficacy with improved renal and bone safety. We report 96-week outcomes for both trials. Methods: In two international trials, patients with chronic HBV infection were randomized 2:1 to receive 25 mg TAF or 300 mg TDF in a double-blinded fashion. One study enrolled HBeAg-positive patients and the other HBeAg-negative patients. We assessed efficacy in each study, and safety in the pooled population. Results: At week 96, the differences in the rates of viral suppression were similar in HBeAg-positive patients receiving TAF and TDF (73% vs. 75%, respectively, adjusted difference −2.2% (95% CI −8.3 to 3.9%; p = 0.47), and in HBeAg-negative patients receiving TAF and TDF (90% vs. 91%, respectively, adjusted difference −0.6% (95% CI −7.0 to 5.8%; p = 0.84). In both studies the proportions of patients with alanine aminotransferase above the upper limit of normal at baseline, who had normal alanine aminotransferase at week 96 of treatment, were significantly higher in patients receiving TAF than in those receiving TDF. In the pooled safety population, patients receiving TAF had significantly smaller decreases in bone mineral density than those receiving TDF in the hip (mean % change −0.33% vs. −2.51%; p &lt;0.001) and lumbar spine (mean % change −0.75% vs. −2.57%; p &lt;0.001), as well as a significantly smaller median change in estimated glomerular filtration rate by Cockcroft-Gault method (−1.2 vs. −4.8 mg/dl; p &lt;0.001). Conclusion: In patients with HBV infection, TAF remained as effective as TDF, with continued improved renal and bone safety, two years after the initiation of treatment. Clinicaltrials.gov number: NCT01940471 and NCT01940341. Lay summary: At week 96 of two ongoing studies comparing the efficacy and safety of tenofovir alafenamide (TAF) to tenofovir disoproxil fumarate (TDF) for the treatment of chronic hepatitis B patients, TAF continues to be as effective as TDF with continued improved renal and bone safety. Registration: Clinicaltrials.gov number: NCT01940471 and NCT01940341

    Multi-walled carbon nanotubes grown from chemical vapor - links between atomic near range order and growth parameters

    No full text
    Extended X-ray absorption fine structure (EXAFS) spectroscopy was used to investigate the atomic near-range structure of iron in multiwalled carbon nanotubes. The nanotubes were grown from xylene and ferroceneusing chemical vapor deposition (CVD) via a large-scale (16 L) reactor. Principal component analysis (PCA)was employed to classify spectra according to their similarities, and full EXAFS analyses were used toinvestigate the iron structure based on models derived from metallicR-Fe and iron-carbide. Relationshipsbetween critical nanotube growth parameters (temperature, CVD feedstock mass, ferrocene mass), macroscopicproduct properties (Fe content and production yield), and structural parameters from the EXAFS analyses arediscussed. The temperature is found to be directly linked to the structure of the Fe-carbides and metallic Fepresent inside the nanotubes. Ferrocene and feedstock masses do not affect the structure of iron-carbides, andthe content of Fe-carbides is found to be higher than in the case of the nanotubes containingR-Fe. Thissituation is reversed for the overall production yield of nanotubes. The results of this study also demonstratehow EXAFS and PCA can be applied to obtain critical structural information from larger numbers of samplesin order to facilitate optimization of nanotube production processes
    corecore