119 research outputs found

    Suppression of ovarian hormones in adolescent rats has no effect on anxiety-like behaviour or c-fos activation in the amygdala

    Get PDF
    Support was provided the British Society for Neuroendocrinology, Carnegie Trust for the Universities of Scotland and School of Psychology & Neuroscience, University of St Andrews.In humans, sex differences in mood disorders emerge during adolescence, with prevalence rates being consistently higher in females than males. It has been hypothesised that exposure to endogenous ovarian hormones during adolescence enhances the susceptibility of females to mood disorders from this stage of life onwards. However, experimental evidence in favour of this hypothesis is lacking. In the present study, we examined the long‐term effects of suppressing adolescent gonadal hormone levels in a group of female Lister‐hooded rats via administration of a gonadotrophin‐releasing hormone antagonist (Antide; administered on postnatal day [PND] 28 and 42) compared to control females and males (n = 14 per group). We predicted that, in adulthood, Antide‐treated female rats would exhibit more male‐like behaviour than control females in novel environments (elevated‐plus maze, open field and light‐dark box), in response to novel objects and novel social partners, and in an acoustic startle task. Progesterone and luteinising hormone assays (which were conducted on blood samples collected on PND 55/56 and 69/70) confirmed that the hypothalamic‐pituitary‐gonadal axis was temporarily suppressed by Antide treatment. In addition, Antide‐treated females were found to exhibit a modest pubertal delay, as measured by vaginal opening, which was comparable in length to the pubertal delay that has been induced by adolescent exposure to alcohol or stress in previous studies of female rats. However, Antide‐treated females did not substantially differ from control females on any of the behavioural tests, despite the evidence for predicted sex differences in some measures. Following the acoustic startle response task, all subjects were culled and perfused, and c‐Fos staining was conducted in the medial and basolateral amygdala, with the results showing no significant differences in cell counts between the groups. These findings suggest that ovarian hormone exposure during adolescence does not have long‐term effects on anxiety‐related responses in female rats.Publisher PDFPeer reviewe

    Neural mechanisms of social learning in the female mouse

    Get PDF
    Social interactions are often powerful drivers of learning. In female mice, mating creates a long-lasting sensory memory for the pheromones of the stud male that alters neuroendocrine responses to his chemosignals for many weeks. The cellular and synaptic correlates of pheromonal learning, however, remain unclear. We examined local circuit changes in the accessory olfactory bulb (AOB) using targeted ex vivo recordings of mating-activated neurons tagged with a fluorescent reporter. Imprinting led to striking plasticity in the intrinsic membrane excitability of projection neurons (mitral cells, MCs) that dramatically curtailed their responsiveness, suggesting a novel cellular substrate for pheromonal learning. Plasticity was selectively expressed in the MC ensembles activated by the stud male, consistent with formation of memories for specific individuals. Finally, MC excitability gained atypical activity-dependence whose slow dynamics strongly attenuated firing on timescales of several minutes. This unusual form of AOB plasticity may act to filter sustained or repetitive sensory signals.R21 DC013894 - NIDCD NIH HH

    Implantation failure in female Kiss1-/- mice is independent of their hypogonadic state and can be partially rescued by leukemia inhibitory factor.

    Get PDF
    The hypothalamic kisspeptin signaling system is a major positive regulator of the reproductive neuroendocrine axis, and loss of Kiss1 in the mouse results in infertility, a condition generally attributed to its hypogonadotropic hypogonadism. We demonstrate that in Kiss1(-/-) female mice, acute replacement of gonadotropins and estradiol restores ovulation, mating, and fertilization; however, these mice are still unable to achieve pregnancy because embryos fail to implant. Progesterone treatment did not overcome this defect. Kiss1(+/-) embryos transferred to a wild-type female mouse can successfully implant, demonstrating the defect is due to maternal factors. Kisspeptin and its receptor are expressed in the mouse uterus, and we suggest that it is the absence of uterine kisspeptin signaling that underlies the implantation failure. This absence, however, does not prevent the closure of the uterine implantation chamber, proper alignment of the embryo, and the ability of the uterus to undergo decidualization. Instead, the loss of Kiss1 expression specifically disrupts embryo attachment to the uterus. We observed that on the day of implantation, leukemia inhibitory factor (Lif), a cytokine that is absolutely required for implantation in mice, is weakly expressed in Kiss1(-/-) uterine glands and that the administration of exogenous Lif to hormone-primed Kiss1(-/-) female mice is sufficient to partially rescue implantation. Taken together, our study reveals that uterine kisspeptin signaling regulates glandular Lif levels, thereby identifying a novel and critical role for kisspeptin in regulating embryo implantation in the mouse. This study provides compelling reasons to explore this role in other species, particularly livestock and humans

    Mouse Estrous Cycle Identification Tool and Images

    Get PDF
    The efficiency of producing timed pregnant or pseudopregnant mice can be increased by identifying those in proestrus or estrus. Visual observation of the vagina is the quickest method, requires no special equipment, and is best used when only proestrus or estrus stages need to be identified. Strain to strain differences, especially in coat color can make it difficult to determine the stage of the estrous cycle accurately by visual observation. Presented here are a series of images of the vaginal opening at each stage of the estrous cycle for 3 mouse strains of different coat colors: black (C57BL/6J), agouti (CByB6F1/J) and albino (BALB/cByJ). When all 4 stages (proestrus, estrus, metestrus, and diestrus) need to be identified, vaginal cytology is regarded as the most accurate method. An identification tool is presented to aid the user in determining the stage of estrous when using vaginal cytology. These images and descriptions are an excellent resource for learning how to determine the stage of the estrous cycle by visual observation or vaginal cytology

    Expanding the role of tachykinins in the neuroendocrine control of reproduction

    Get PDF
    Reproductive function is driven by the hormonal interplay between the gonads and brain–pituitary axis. Gonadotropin-releasing hormone (GnRH) is released in a pulsatile manner, which is critical for the attainment and maintenance of fertility; however, GnRH neurons lack the ability to directly respond to most regulatory factors, and a hierarchical upstream neuronal network governs its secretion. We and others proposed a model in which Kiss1 neurons in the arcuate nucleus (ARC), called as KNDy neurons, release kisspeptin (a potent GnRH secretagogue) in a pulsatile manner to drive GnRH pulses under the coordinated autosynaptic action of its cotransmitters, the tachykinin neurokinin B (NKB, stimulatory) and dynorphin (inhibitory). Numerous genetic and pharmacological studies support this model; however, additional regulatory mechanisms (upstream of KNDy neurons) and alternative pathways of GnRH secretion (kisspeptin independent) exist, but remain ill defined. In this aspect, attention to other members of the tachykinin family, namely substance P (SP) and neurokinin A (NKA), has recently been rekindled. Even though there are still major gaps in our knowledge about the functional significance of these systems, substantial evidence, as discussed below, is placing tachykinin signaling as an important pathway for the awakening of the reproductive axis and the onset of puberty to physiological GnRH secretion and maintenance of fertility in adulthood

    WDR11-mediated Hedgehog signalling defects underlie a new ciliopathy related to Kallmann syndrome

    Get PDF
    WDR11 has been implicated in congenital hypogonadotropic hypogonadism (CHH) and Kallmann syndrome (KS), human developmental genetic disorders defined by delayed puberty and infertility. However, WDR11's role in development is poorly understood. Here, we report that WDR11 modulates the Hedgehog (Hh) signalling pathway and is essential for ciliogenesis. Disruption of WDR11 expression in mouse and zebrafish results in phenotypic characteristics associated with defective Hh signalling, accompanied by dysgenesis of ciliated tissues. Wdr11-null mice also exhibit early-onset obesity. We find that WDR11 shuttles from the cilium to the nucleus in response to Hh signalling. WDR11 regulates the proteolytic processing of GLI3 and cooperates with the transcription factor EMX1 in the induction of downstream Hh pathway gene expression and gonadotrophin-releasing hormone production. The CHH/KS-associated human mutations result in loss of function of WDR11. Treatment with the Hh agonist purmorphamine partially rescues the WDR11 haploinsufficiency phenotypes. Our study reveals a novel class of ciliopathy caused by WDR11 mutations and suggests that CHH/KS may be a part of the human ciliopathy spectrum.Peer reviewe

    Exploring female mice interstrain differences relevant for models of depression

    Get PDF
    Depression is an extremely heterogeneous disorder. Diverse molecular mechanisms have been suggested to underlie its etiology. To understand the molecular mechanisms responsible for this complex disorder, researchers have been using animal models extensively, namely mice from various genetic backgrounds and harboring distinct genetic modifications. The use of numerous mouse models has contributed to enrich our knowledge on depression. However, accumulating data also revealed that the intrinsic characteristics of each mouse strain might influence the experimental outcomes, which may justify some conflicting evidence reported in the literature. To further understand the impact of the genetic background, we performed a multimodal comparative study encompassing the most relevant parameters commonly addressed in depression, in three of the most widely used mouse strains: Balb/c, C57BL/6, and CD-1. Moreover, female mice were selected for this study taken into account the higher prevalence of depression in women and the fewer animal studies using this gender. Our results show that Balb/c mice have a more pronounced anxious-like behavior than CD-1 and C57BL/6 mice, whereas C57BL/6 animals present the strongest depressive-like trait. Furthermore, C57BL/6 mice display the highest rate of proliferating cells and brain-derived neurotrophic factor (Bdnf) expression levels in the hippocampus, while hippocampal dentate granular neurons of Balb/c mice show smaller dendritic lengths and fewer ramifications. Of notice, the expression levels of inducible nitric oxide synthase (iNos) predict 39.5% of the depressive-like behavior index, which suggests a key role of hippocampal iNOS in depression. Overall, this study reveals important interstrain differences in several behavioral dimensions and molecular and cellular parameters that should be considered when preparing and analyzing experiments addressing depression using mouse models. It further contributes to the literature by revealing the predictive value of hippocampal iNos expression levels in depressive-like behavior, irrespectively of the mouse strain.This work was funded by the Portuguese North Regional Operational Program (ON.2-O Novo Norte) under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER). The funders had no involvement into the analysis and interpretation of data, writing of the manuscript or the decision to submit the article for publication
    • 

    corecore