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REPRODUCTION-DEVELOPMENT

Implantation Failure in Female Kiss1~/~ Mice Is
Independent of Their Hypogonadic State and Can Be
Partially Rescued by Leukemia Inhibitory Factor

Michele Calder,* Yee-Ming Chan,* Renju Raj, Macarena Pampillo,
Adrienne Elbert, Michelle Noonan, Carolina Gillio-Meina, Claudia Caligioni,
Nathalie G. Bérubé, Moshmi Bhattacharya, Andrew J. Watson,*

Stephanie B. Seminara,” and Andy V. Babwah*

The Children’s Health Research Institute (M.C., M.P., A.E., C.G.-M., N.G.B., AJ.W., A.V.B.), Lawson
Health Research Institute (M.C., M.P., A.E., C.G.-M., N.G.B., AJ.W., A.V.B.), and Department of
Obstetrics and Gynaecology (M.C., M.P., AJ.W., A.\V.B.), London, Ontario, Canada N6C 2V5; Harvard
Reproductive Endocrine Sciences Center (Y.-M.C., C.C., S.B.S.), Reproductive Endocrine Unit,
Massachusetts General Hospital, Boston, Massachusetts 02114; Division of Endocrinology (Y.-M.C.),
Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts 02115; Department of
Obstetrics and Gynecology and Reproductive Sciences (R.R.), University of Vermont College of Medicine,
Burlington, Vermont 05405; and Departments of Paediatrics (A.E., N.G.B.), Biochemistry (A.E., N.G.B.),
Physiology and Pharmacology (M.N., M.B., A.J.W., A.V.B.), and Oncology (M.B.), The University of
Western Ontario, London, Ontario, Canada N6A 5C1

The hypothalamic kisspeptin signaling system is a major positive regulator of the reproductive
neuroendocrine axis, and loss of Kiss7 in the mouse results in infertility, a condition generally
attributed to its hypogonadotropic hypogonadism. We demonstrate that in Kiss7~/~ female mice,
acute replacement of gonadotropins and estradiol restores ovulation, mating, and fertilization;
however, these mice are still unable to achieve pregnancy because embryos fail to implant. Pro-
gesterone treatment did not overcome this defect. Kiss7"/~ embryos transferred to a wild-type
female mouse can successfully implant, demonstrating the defect is due to maternal factors. Kiss-
peptin and its receptor are expressed in the mouse uterus, and we suggest that it is the absence of
uterine kisspeptin signaling that underlies the implantation failure. This absence, however, does
not prevent the closure of the uterine implantation chamber, proper alignment of the embryo, and
the ability of the uterus to undergo decidualization. Instead, the loss of Kiss7 expression specifically
disrupts embryo attachment to the uterus. We observed that on the day of implantation, leukemia
inhibitory factor (Lif), a cytokine that is absolutely required for implantation in mice, is weakly
expressed in Kiss1~/~ uterine glands and that the administration of exogenous Lif to hormone-
primed Kiss1~/~ female mice is sufficient to partially rescue implantation. Taken together, our
study reveals that uterine kisspeptin signaling regulates glandular Lif levels, thereby identifying a
novel and critical role for kisspeptin in regulating embryo implantation in the mouse. This study
provides compelling reasons to explore this role in other species, particularly livestock and humans.
(Endocrinology 155: 3065-3078, 2014)

Kisspeptins are currently best known for being central
regulators of the reproductive endocrine system. Kiss-
peptins potently stimulate the hypothalamic release of
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GnRH, thereby activating the entire reproductive endo-
crine cascade, with pituitary release of FSH and LH and,
in turn, gonadal secretion of sex steroids and gametogen-
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Abbreviations: CL, corpora lutea; E2, 17B-estradiol; ER, estrogen receptor; hCG, human
chorionic gonadotropin; KISS1, kisspeptin gene; KISS1R, receptor; Kp, kisspeptin; Lif, leu-
kemia inhibitory factor; P4, progesterone; PMSG, pregnant mare serum gonadotrophin;
PR, progesterone receptor; PRL, prolactin; WT, wild type.
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esis (1, 2). In the absence of kisspeptin signaling, GnRH
secretion is markedly impaired, resulting in hypogonado-
tropic hypogonadism, and human patients with mutations
in the genes for kisspeptin (KISS1) or its receptor (KISS1R;
formerly called GPR54) and mice carrying targeted dele-
tions in Kiss1 or Kiss1r fail to undergo sexual maturation
and are infertile (1-7).

Based on a number of studies, extrahypothalamic kiss-
peptin signaling has been proposed as a regulator of pla-
centation and pregnancy. These studies include the obser-
vations that KISST and KISSTR mRNA are expressed at
high levels in the placenta (8) and that in nonpregnant
women, plasma concentrations of immunoreactive kiss-
peptin are very low (~1 fmol/mL), whereas in pregnant
women kisspeptin levels increase dramatically, 940-fold
in the first trimester and about 7000-fold in the third tri-
mester (9). Kisspeptin also increases extravillous tropho-
blast adhesion in vitro (10), and this might in part account
for the decrease in extravillous trophoblast invasion also
observed in vitro (8). In addition to being expressed in the
human placenta (8-10), KISS1 and KISSIR are also ex-
pressed in the human female genital tract (11). Collectively
these findings suggest that kisspeptin is important for em-
bryonic implantation, placentation, and pregnancy, inde-
pendent of its effects on GnRH secretion.

To assess the role of kisspeptin in pregnancy in vivo, we
have examined the ability of Kiss1 ™/~ and Kiss17~'~ mice
to become pregnant. Because an intact hypothalamic-pi-
tuitary-gonadal axis is required both for ovulation and for
pregnancy maintenance, exogenous hormone replace-
ment regimens were used to overcome the hormonal de-
ficiencies of these mutant mice. This allowed us to deter-
mine whether mice defective in kisspeptin signaling have
intrinsic, hormone-independent defects in the ability to
achieve and maintain pregnancy.

Materials and Methods

Mice

Kiss1™/~ (Kiss1™1R1) and Kisslr /'~ (Kiss1r™1R) mice
were generated as previously described (5). Animals were housed
at the London Regional Cancer Program Animal Facility (Lon-
don, Ontario, Canada) at controlled temperature and a 12-hour
light, 12-hour dark cycle. Animal care and handling were done
according to the guidelines of the University of Western Ontario
(Canada) Animal Care Committee approved by the Canadian
Council on Animal Care.

For the following methods, please refer to Figure 1.

Standard superovulation protocol

Kiss1™/~, Kiss1r~'~, and wild-type (WT) female mice, 6—8
weeks old, were administered 7.5 IU pregnant mare serum go-
nadotrophin (PMSG; Folligon; Intervet) ip followed 48 hours
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later by 7.5 TU human chorionic gonadotropin (hCG; Chorulon;
Intervet) ip Immediately after the hCG injection, mice were
mated to WT males. The day of mating is defined as day 0. Only
females that showed a copulatory plug (evidence of successful
mating) on the morning of day 1 were studied further.

17B-Estradiol (E2) priming/superovulation protocol
Four-week-old Kiss1 ™'~ and Kiss1r~’~ female mice received
seven to nine injections of E2 (Sigma) 1 ugin 100 pL sesame oil
(Sigma) per injection sc every 3—4 days over a 4-week period.
Three to four days after the last E2 injection, E2-primed mice
underwent superovulation as described above. Mice were ap-
proximately 9 weeks old at the end of this treatment.

E2/gonadotropin priming/superovulation protocol

Four-week-old Kiss1~/~, Kiss1r~'~, and WT female mice re-
ceived seven to nine E2 injections over a 4-week period as de-
scribed above. Coincident with the last E2 injection, mice re-
ceived 7.5 TUPMSG/7.5 TUhCG ip. Three to four days later, mice
received 7.5 ITU PMSG/1.0 TU hCG ip and 48 hours later 7.5 TU
hCG ip. Immediately after the final hCG injection, mice were
mated to WT males. Mice were approximately 9 weeks old at the
end of this treatment.

Progesterone (P4) supplementation

E2/gonadotropin-primed/superovulated Kiss1~/~ females
received a single injection of P4 (1 mg in 100 uL peanut oil;
Sigma) sc either once on the third day (day 3) after mating or daily
fromday 3 today 17.E2 (20 ngin 100 pL peanut oil) was injected
sc on day 4 to further induce uterine receptivity (12).

Isolation and characterization of preimplantation
embryos

Time after hCG was used to determine the developmental age
of the embryos. Preimplantation embryos were collected at 66
hours (eight cell stage) from both the oviduct and the uterus (for
the Kiss1™~ embryo transfer study, see below), and on day 4
from the uterus (for characterizing preimplantation embryonic
development, see Table 1) (13). Embryos were flushed from the
reproductive tract using M2 medium (Sigma).

Leukemia inhibitory factor (Lif) supplementation

E2/gonadotropin-primed/superovulated Kiss1~/~ females
received single P4 (1 mg) injections sc daily from the third to the
ninth day (day 3 to day 9) after mating. On day 4 at 10:00 Am,
mice received a single E2 (20 ng) injection sc that was coadmin-
istered with the P4 injection; 4-6 hours later they were given a
single ip injection of Lif (Escherichia coli-derived recombinant
mouse Lif; eBioscience, Inc) 10, 12.5, or 17 pg. Lif dosing was
based on previous studies (14, 15). On day 10, mice were killed
by CO, exposure followed by cervical dislocation, and uteri were
examined for embryo implantation sites.

LH, P4, and prolactin (PRL) assays

Serum LH, P4, and PRL were measured by the Endocrine
Technology and Support Lab, Oregon National Primate Re-
search Center (Beaverton, Oregon). Blood was allowed to clot at
room temperature for 120 minutes. The clot was then removed
with a wooden applicator stick and the remaining serum centri-
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Figure 1. Chart summarizing the treatments used in Kiss7~/~ female mice.

fuged at 2000 X g for 20 minutes at room temperature. LH was
analyzed by a traditional double-antibody RIA procedure sim-
ilar to that described previously (16). The detection limit of the
assay was 0.1-0.2 ng/mL. The interassay variation was less than
12% and the intraassay variation was less than 8%. P4 was
measured by ether extraction RIA (17). The detection range of
the assay was 0.17-25 ng/mL. The overall interassay variation
was less than 15% and the intraassay variations were 10% or
less. PRL was determined using a commercial ELISA kit (Abcam
catalog number 100736) calibrated specifically for the mouse.
This assay has a range of 27.43-20 000 pg/mL. The intra- and
interassay variations were less than 5% and 10%, respectively.

Kisspeptin replacement

3067

E2/gonadotropin-primed/superovulated Kiss1 '~ and super-

ovulated WT mice were implanted sc with osmotic minipumps
(Alzet model 2001) that delivered Kp-10 (Sigma) ata rate of 0.25
nmol/h (1 uL/h) or vehicle alone (PBS) for 8 days. Implantation
was done on the morning of day 0 (the day of mating), 2 days
after the mice received 7.5 IU PMSG/1.0 IU hCG. On the after-
noon of day 0, mice were administered 7.5 IU hCG ip and mated
immediately afterward to WT males. On the morning of day 8,
the mice were anesthetized by CO, exposure followed by cervical
dislocation, and blood was collected immediately afterward by
cardiac puncture. Uteri were examined for embryo implantation

Table 1.

Number and Stages of Preimplantation Embryos Obtained on Day 4 After Superovulated or

E2/Gonadotropin-Primed/SO WT and Kiss7~/~ Females Were Mated to WT Males

WT Females After
E2/Gonadotropin-

WT Females

Kiss1~/~ Females After

Kiss1~'~ Females = E2/Gonadotropin-

After Standard SO Priming/SO After Standard SO Priming/SO

Embryonic Stage (n =6) (n=6) (n=6) (n=9)
Two cell 0 0 0 0

Four cell 0 0 0 0

Eight cell 03+0.3 0 0 0

Morula 7.2*+14 7.7 £1.6 0 29+1.0
Blastocysts 7.2 1.7 11.0+2.3 0 58=*13
Degenerate 80=*29 7.0£0.7 0 87 3.0
Mean *+ SEM for viable embryos 147 =26 18.7 = 3.7 0 8717

(morula and blastocyst) per mouse

Abbreviation: SO, superovulated. Data are shown as mean * SEM.
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sites. In a companion study designed to determine the effect of
prolonged kisspeptin (Kp)-10 on Kiss1r signaling, 6- to 8-week-
old WT female mice were ovariectomized and one week later
were separated into four groups. Each group was implanted sc
with osmotic minipumps that delivered PBS to two groups for 8
days or Kp-10 (Sigma) 1.0 ul (0.25 nmol)/h to the remaining two
groups for 8 days. On the morning of the eighth day, one PBS-
and one Kp-10-infused group received 100 wL of PBS ip, whereas
one PBS- and one Kp-10-infused group received 100 uL (50
nmol) of Kp-10 ip. Thirty minutes later, the mice were anesthe-
tized by CO, exposure followed by cervical dislocation, and
blood was collected immediately after by cardiac puncture.

Artificial decidualization

Experiments were conducted similarly to that described pre-
viously (14). Six-week-old female Kiss1™~ (n = 4) and WT
control (n = 4) mice were bilaterally ovariectomized under iso-
flurane anesthesia. Approximately 2 weeks later, the mice were
given daily sc injections of 100 ng of E2 (Sigma) prepared in
sesame oil for 3 days. After 2 days of rest, the mice received daily
injections of 1 mg P4 (Sigma) plus 10 ng of E2 prepared in sesame
oil for 2 days. On the third day, under isoflurane anesthesia, 50
L of sesame oil was injected into the lumen of the left uterine
horn as a decidual stimulus. After all of the surgical procedures,
ketoprofen was given for 2 days for pain relief. Daily scinjections
of P4 (1 mg) were continued for 4 days. On the fifth day, the
uterus was removed and analyzed.

The following methods are described in the Supplemental
Information: Kiss1™'~ embryo transfer study; quantitative RT-
PCR analysis of gene expression (Supplemental Table 3); histol-
ogy; immunofluorescence analysis (Supplemental Table 4); im-
munohistochemistry (Supplemental Table 4); Western blotting
(Supplemental Table 4); in situ analysis; and statistical analysis.

Results

Priming with both E2 and gonadotropins is
required for follicular development in Kiss1™/~ and
Kiss1r~'~ mice

In Kiss1~/~ and Kiss1r~/~ mice, follicular development
stalls at the antral stage, and knockout females mated to
WT males of proven fertility do not become pregnant (2—
5). To determine whether the infertility in these animals
was due solely to their neuroendocrine defects, we by-
passed the gonadotropin deficiency of Kiss1™/~ and
Kiss1r~'~ female mice by administering exogenous go-
nadotropins using a standard superovulation protocol
(Figure 1). Treated female mice housed with fertile WT
males (day 0) never displayed copulatory plugs, indicating
that there was no successful mating. On day 4, gross ex-
amination revealed that the ovaries of gonadotropin-
treated Kiss1 '~ and Kiss1r~/~ females were pale and in-
distinguishable from those of untreated Kiss1 ™/~ and
Kiss1r~’~ mice. Additionally, they were approximately
75% smaller than ovaries from superovulated WT females
[Supplemental Figure 1, A and B (data shown for Kiss1 '~

Endocrinology, August 2014, 155(8):3065-3078

females only)], and histological analysis revealed follicular
development stalled at the early antral stage (Supplemen-
tal Figure 1, A and B), similar to what had previously been
reported for untreated Kiss1 '~ and Kiss1r~/~ females
(2-5). Upon flushing the dissected uterine tracts from su-
perovulated Kiss1~/~ and Kiss1r~'~ females on day 4,
neither oocytes nor embryos were recovered (Table 1, data
shown for Kiss1~/~ females only), and females never
showed outward signs of being pregnant nor did they give
birth. In striking contrast, WT females that underwent the
superovulation protocol displayed copulatory plugs after
mating and possessed larger genital tracts and an abun-
dance of corpora lutea (CL) (Supplemental Figure 1A).
Preimplantation embryos could be obtained from super-
ovulated WT females (Table 1), and these mice exhibited
successful pregnancies. We conclude that gonadotropin
replacement administered through a standard superovu-
lation protocol is not sufficient to restore follicular devel-
opment and ovulation in Kiss1 ™/~ and Kiss1r~’~ mice. In
subsequent studies we focused our attention on Kiss1 ™/~
female mice only.

Because estradiol acts synergistically with FSH to en-
hance follicular proliferation and differentiation in hy-
pophysectomized mice (18), we next determined whether
E2 priming coupled to the standard superovulation pro-
tocol was sufficient to trigger follicular maturation and
ovulation. We refer to this as the E2 priming/superovula-
tion protocol (Figure 1). In two independent trials, we
found this treatment was sufficient to trigger ovulation.
However, upon histological examination, we observed a
large number of CL in the ovaries that contained unre-
leased eggs (data not shown).

We then tested whether E2 priming coupled to a brief
period of gonadotropin priming followed by the standard
superovulation protocol could rescue follicular develop-
ment and trigger ovulation more efficiently. We refer to
this as the E2/gonadotropin priming/superovulation pro-
tocol (Figure 1). On the day after mating, approximately
half of Kiss1~/~ females that underwent this protocol dis-
played a copulatory plug. Their ovaries contained multi-
ple CL similar in size and number to those of age-matched
WT females that had undergone either the standard su-
perovulation protocol (Supplemental Figure 1, A and C)
or the E2/gonadotropin priming/superovulation protocol
(data not shown). Furthermore, these CL did not contain
unreleased eggs. Upon flushing the dissected uterine tracts,
embryos were detected ranging from the eight-cell to blas-
tocyst stages (Table 1). The numbers of total and viable
embryos recovered from E2/gonadotropin-primed/super-
ovulated Kiss1~/~ and superovulated WT or E2/gonado-
tropin-primed/superovulated WT females were compara-

ble (P > .05) (Table 1).
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Based on the results from the three trials just described,
we used the E2/gonadotropin priming/superovulation
protocol for conducting subsequent studies. Importantly
and irrespective of the protocol used, our data clearly re-
vealed that the defects in the folliculogenesis and ovulation
observed in mice deficient for kisspeptin signaling are sec-
ondary to their hypogonadotropic state.

E2/gonadotropin-primed/superovulated Kiss1™/~
mice fail to achieve pregnancy due to defects in
embryo implantation

Although the E2/gonadotropin priming/superovula-
tion protocol successfully induced follicular maturation
and ovulation in KissI1 /" mice, these mice failed to be-
come pregnant after mating (n = 3). In contrast, WT fe-
males that underwent the E2/gonadotropin priming/su-
perovulation protocol went on to have successful and
normal pregnancies. Mating plugs were observed in ap-
proximately 60% of E2/gonadotropin-primed/superovu-
lated Kiss1™/~ females mated to WT males vs approxi-
mately 70% of WT females mated to WT males, and
preimplantation embryos could be retrieved from the uter-
ine tracts on day 4. Thus, the inability to achieve preg-
nancy could not be attributed to defects in mating, fertil-
ization, or early development. Furthermore, because
implantation sites were not detected on day 7 (n = 3) or
day 14 (n = 2) in the dissected uterine tracts and unim-
planted blastocysts could be flushed out of the uterus as
late as day 7, failure to become pregnant was likely due to
an implantation defect.

E2/gonadotropin-primed/superovulated Kiss1~/~
mice produce normal amounts of P4

Secretion of P4 by the CL is essential for the develop-
ment of endometrial receptivity for blastocyst implanta-
tion and the maintenance of pregnancy (19). To determine
whether the implantation defect observed in Kiss1 ™/~
mice could be due to deficiency of P4, measurements of P4
were performed in Kiss1~’~ and WT mice on day 4 after
mating (Table 2). The P4 levels in the untreated WT fe-
males were greater than that of untreated Kiss1 '~ females
(43.5+10.1vs 7.1 = 0.6 ng/mL) (P <.05),an observation
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consistent with the absence of CL in the Kiss1 ™/~ females
(2-5). The P4 levels in the E2/gonadotropin-primed/su-
perovulated Kiss1 ™/~ mice were approximately 6-fold
greater than those in untreated Kiss1 ™/~ females (44.3 +
10.3 vs 7.1 = 0.6 ng/mL) (P < .05), indicating that hor-
mone treatment produced functional CL in the Kiss1 ™/~
females. Finally, we compared the P4 levels in the treated
Kiss1~/~ females with untreated WT females (44.3 + 10.3
vs 43.5 = 10.1 ng/mL) (P > .05) and superovulated WT
females (44.3 = 10.3 vs 109.0 = 23.7 ng/mL) (P > .0S5).
Although the P4 levels were statistically similar among the
three groups, confirming that hormone treatment pro-
duced functional CL in the Kiss1 ™/~ females, the P4 levels
trended lower in the treated Kiss1~’~ and untreated WT
females vs superovulated WT females.

P4 and E2 supplementation does not rescue
implantation in E2/gonadotropin-primed/
superovulated Kiss7™~ mice

Although no significant differences in serum P4 levels
were found between the E2/gonadotropin-primed/super-
ovulated Kiss1~/~ and WT mice on day 4 after mating to
WT males (Table 2), it remains possible that subtle dif-
ferences in P4 production could have resulted in impaired
endometrial receptivity. To address this possibility, E2/
gonadotropin-primed/superovulated Kiss1~/~ females
were injected with P4 on the third day after mating fol-
lowed by an E2 injection on day 4 (day of implantation) to
potentiate uterine receptivity (12). Although the P4 injec-
tion resulted in P4 levels in animals that were nearly 2-fold
higher than that in noninjected E2/gonadotropin-primed/
superovulated Kiss1~/~ females [83.1 + 7.9 vs 44.3 +
10.3 ng/mL (Table 2)], P4 and E2 treatment did not rescue
implantation. To determine whether more prolonged ex-
posure to P4 could rescue implantation, mice were injected
repeatedly with P4 from day 4 through day 17; these mice
also failed to become pregnant.

P4 and E2 receptors are expressed in the Kiss1™/~
uterus

Given the observation that E2 and P4 supplementation
failed to rescue implantation, we considered the possibility

Table 2. P4 Levels Measured on the Fourth Day After Female Mice From the Groups Were Mated to WT Males
Kiss1~'~ Kiss1~'~ E2/Gonadotropin-
E2/Gonadotropin- Kiss1~'~ Primed/SO+P4 (Day 3)
WT, SO WT, Untreated Primed/SO Untreated +E2 (Day 4)
Hormone (n=9) (n=06) (n=6) (n=4) (n=5)
P4, ng/mL 109.0 = 23.7 43.5 = 10.1 44.3 = 10.3 7.1 £0.6 83.1+£79

Abbreviation: SO, superovulated. Groups are as follows: 1) SO WT females; 2) untreated WT females; 3) E2/gonadotropin-primed SO Kiss? '~
females; 4) untreated Kiss1~/~ females; and 5) E2/gonadotropin-primed SO Kiss7~/~ females that received a P4 injection (s¢) (1 mg/100 ul) on the
third day after mating followed by an E2 injection (sc) (20 ng/100 wL) on the morning of day 4. Data are shown as mean = SEM.
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that the expression of Pgr, Esr1, and Esr2, the genes en-
coding for the progesterone and estrogen receptors (« and
B), respectively, was down-regulated in the Kiss1 ™/~
uterus, and thus, the uterus was unable to respond to these
hormonal signals. However, in day 4 (1:00 pm) uterine
tissue, RT-PCR analyses confirmed all genes were ex-
pressed at similar levels (P > .05) in both the superovu-
lated WT and E2/gonadotropin-primed/superovulated
Kiss1™/~ females (Figure 2, A, D, and E). Western blot
analyses revealed that both progesterone receptor (PR)
isoforms and the estrogen receptor (ER)-a were also ex-
pressed at similar levels between WT and Kiss1 ™/~ mice
(Figure 2, B and F). Additionally, the levels and spatial
distribution of PR and ERa, as determined by immuno-
histochemistry/immunofluorescence, were similar be-
tween the WT and Kiss1~’~ mice, with both receptors
localized to the luminal and glandular epithelia and en-
dometrial stromal cells (Figure 2, C and G). Taken to-
gether, the data indicate that the expression of PR-A,
PR-B, and ER« was similar between genotypes and there-
fore that changes in expression levels were not the cause of
the implantation defect.

Implantation failure in Kiss7~/~ mice is due to a
maternal defect

We found that E2/gonadotropin priming/superovula-
tion restored follicular development, triggered ovulation,
and generated functional CL in Kiss1 ™/~ females. Addi-
tionally, Kiss1 ™'~ oocytes were successfully fertilized in
vivo. Despite their normal appearance, it was possible that
some impairment in Kiss1*/~ blastocysts was the under-
lying cause of implantation failure. To test this possibility,
eight-cell Kiss1*/~ embryos generated from E2/gonado-
tropin-primed/superovulated Kiss1 '~ females and eight-
cell WT control embryos from superovulated WT females
(both mated to WT males) were transferred into the ovi-
ducts of a recipient WT female (n = 3). Both WT and
Kiss1*’~ embryos implanted successfully and developed
at a similar rate (Supplemental Figure 2), leading us to
conclude that the failure of Kiss1*/~ embryos to implant
in a Kiss1~/~ female is a maternal and not an embryonic
defect.

The Kiss1/Kiss1r signaling system is expressed in
the ovaries, oviducts, and uterus of mice

Because implantation failure could be attributed to a
maternal defect, the expression of Kiss1 and Kiss1r in the
female reproductive tract was examined on day 4 (1:00 pm)
using RT-PCR. The expression of Kiss1 and Kiss1r was
demonstrated in the ovary, oviduct, and uterus of WT
mice (Figure 3). Kiss1 expression, as expected, was absent
from these tissues in the Kiss1~~ mouse (Figure 3A). Uter-
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ine kisspeptin expression was also determined by immu-
nofluorescence analysis (Figure 3B). Again, as expected,
kisspeptin was not expressed in the Kiss1 '~ mouse (Fig-
ure 3B, panels vii-xiii). In the WT mouse, however, kiss-
peptin was detected at high levels throughout the endo-
metrium (Figure 3B, panels i-vi) and upon closer
investigation was found to be strongly localized to the
subluminal epithelial layer (Figure 3B, panel v) and on the
outside of the glandular epithelium (Figure 3B, panel vi).
Based on quantitative RT-PCR analysis of gene expres-
sion, relative to WT mice, Kiss1 ™/~ mice demonstrated a
nonsignificant trend toward increased Kiss17 expression
in the ovary (P = .094) and a significant increase in ex-
pression in the oviduct (P = .020) and uterus (P = .023)
(Figure 3B). Based on in situ analysis, we observed that in
the WT uterus, Kiss1ris distributed to the distal face of the
luminal epithelial layer (Figure 3D, panel i), whereas in the
Kiss1~'~ uterus, the distribution is more dispersed within
the epithelial layer (Figure 3D, panel ii). Overall, based on
visual inspection of the in situ data, it appears as though
Kiss1rexpression is elevated in Kiss1~/~ luminal epithelial
cells, a finding that is consistent with the quantitative RT-
PCR analysis. These findings demonstrate that the kiss-
peptin/Kiss1r signaling system is expressed in the WT fe-
male reproductive tract.

Kisspeptin replacement fails to rescue implantation
in E2/gonadotropin-primed/superovulated Kiss1~/~
mice

To determine whether restoring kisspeptin to Kiss1 /'~
mice could rescue implantation, we delivered Kp-10 sc for
8 days at a rate of 0.25 nmol/h, a dose based on published
studies using Kp-10 in a rat model (20) and adjusted based
on weight. First, to exclude the possibility that exogenous
continuous kisspeptin administration itself could disrupt
pregnancy, superovulated WT females received either
Kp-10 or PBS. In both groups examined on day 8, im-
planted WT embryos were present in both horns of the
examined uteri, and pregnancy outcomes for the WT fe-
males receiving Kp-10 were comparable with WT females
receiving PBS (five of seven WT females receiving Kp-10
became pregnant with 12, 23, 12, 9, and 18 embryo im-
plantations per mouse vs four of four WT females receiv-
ing PBS became pregnant with 14, 12,23, and 20 embryo
implantations per mouse, P > .05). In contrast, on day 8,
E2/gonadotropin-primed/superovulated  Kiss1 ™/~ fe-
males that received infusions of either Kp-10 or vehicle
alone displayed no evidence of implantation. Hormone
measurements revealed that P4 levels were not signifi-
cantly different between superovulated WT and E2/go-
nadotropin-primed/superovulated Kiss1 '~ females (Sup-
plemental Table 1) and that LH levels (Supplemental
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Figure 2. Pgr, Esr, PR, and ER are expressed at similar levels in the uteri of Kiss7 =/~ and WT mice. Relative to the expression of two housekeeping
genes (Hprt, Sdha), the expression of Pgr, Esr1, and Esr2 (A, D, and E) was determined by quantitative RT-PCR [for superovulated WT female mice,
n = 6; for E2/gonadotropin-primed/superovulated KO (Kiss7~/~) mice, n = 4]. The spatial distribution and expression levels of PR-A and PR-B (the
PR antibody detects both isoforms) were determined by immunohistochemistry, whereas that of ERa was determined by immunofluorescence (C
and G) (for WT, n = 4; for KO (Kiss7~/7), n = 4). The expression level of PR-A, PR-B, and ERa was also determined by Western blotting (B and F)
(for WT, n = 4; for knockout (KO) (Kiss7~/~), n = 4). Error bars represent SEM. DIC, differential interference contrast; GE, glandular epithelium;

L, lumen; LE, luminal epithelium; St, stroma; HOECHST, nucleic acid stain that identifies nuclei.

The Endocrine Society. Downloaded from press.endocrine.org by [${individual User.displayName}] on 06 October 2015. at 10:03 For personal use only. No other uses without permission. . All rights reserved.



3072 Calder et al Kisspeptin Regulates Implantation

A

20

08

RELATIVE EXPRESSION

Endocrinology, August 2014, 155(8):3065-3078

Kiss1

Kiss1r

38

30

RELATIVE EXPRESSION

img ” ’-i x“‘?ﬁ (

Figure 3. The Kiss1/Kiss1r signaling system is expressed in the ovaries, oviducts, and uteri of Kiss7~/~ and WT mice. In the ovaries, oviducts, and
uteri of E2/gonadotropin-primed/superovulated KO (Kiss7~/~) female mice, relative to the expression of two housekeeping genes (Hprt, Sdha), the
expression of Kiss7 and Kiss7r (A and C) [for WT, n = 6; for KO (Kiss7~/~), n = 4] was determined by quantitative RT-PCR. The expression of
Kiss1r was further determined by in situ analysis (D, arrowheads show Kissr is localized to the luminal epithelium) [for WT, n = 4; for KO (Kiss7~/7), n =
4], whereas the expression of Kiss1 was determined by immunofluorescence (B) [for WT, n = 4; for KO (Kiss7~/~), n = 4]. Error bars represent
SEM. DIC, differential interference contrast; GE, glandular epithelium; KO, knockout; L, lumen; LE, luminal epithelium; SL, subluminal epithelial
layer; St, stroma; HOECHST, nucleic acid stain that identifies nuclei.
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Table 1) were comparable in magnitude with levels re-
ported for unstimulated WT and Kiss1 /" mice (5). PRL,
a major luteotropic hormone essential for CL function in
mice, was comparable across treatments and genotypes
(Supplemental Table 1).

Because both WT and Kiss1~/~ mice were chronically
infused with kisspeptin for the same period of time (8 d)
and WT mice became pregnant at a rate similar to WT
mice receiving PBS, uterine Kiss1r desensitization could
not account for the implantation failure in the Kiss1 /'~
mice. To investigate this further, we determined whether
hypothalamicKiss1r displayed evidence of desensitization
after 8 days of Kp-10 infusion. The ovariectomized mice
(with effective gonadectomy demonstrated by low P4 lev-
els, Supplemental Table 2) were infused with either Kp-10
or PBS for 8 days and then received a single ip injection of
either PBS or 50 nmol Kp-10. The LH levels were signif-
icantly (P < .05) higher in the animals that received the
Kp-10 ip injection, regardless of whether the baseline in-
fusion was PBS or Kp-10 (Supplemental Table 2). Thus,
assuming that the hypothalamic Kiss1r function is an ap-
propriate surrogate for uterine Kiss1r function, we con-
cluded that the chronic infusion of Kp did not desensitize
Kiss1r.

Kiss1~/~ and WT uteri are histologically similar

We next examined whether the underlying cause of im-
plantation failure was an anatomical defect of the
Kiss1~'~ uterus. The uterine horns from 6- to 12-week-old
untreated Kiss1 ™/~ females were threadlike as previously
reported (4, 5), whereas the horns from age-matched E2/
gonadotropin-primed/superovulated Kiss1~/~ and WT
females were approximately 4 times larger in diameter
(P < .001) (Figure 4, A—C). Despite the difference in size,
uterine anatomy between the WT and Kiss1~/~ mice was
very similar (Figure 4, A-C). The only striking difference
detected was the greater presence of dilated blood vessels
localized to the basal endometrium at the interface with
circular smooth muscle layer (Figure 4, C, E, and F). On
higher-power images (Figure 4F), numerous tightly con-
stricted arterioles are present, identified by surrounding
vascular smooth muscle (black arrows). This suggests that
the dilated structures (black arrowheads) are veins. The
presence of increased numbers of these dilated endome-
trial vessels was not due to E2/gonadotropin priming/su-
perovulation because uteri from the WT mice that had
undergone the same treatment had fewer such vessels (Fig-
ure 4, B and D).

The Kiss1™/~ uterus remains partially responsive to
the embryo and can undergo decidualization in
response to an artificial stimulus

Histological analysis clearly revealed that on the after-
noon of day 5 in E2/gonadotropin-primed/superovulated
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WT mothers, WT embryos had implanted (n = §) (Figure
4G), whereas Kiss1™'~“embryos had not (n = 5) in their
E2/gonadotropin-primed/superovulated Kiss1~’~ moth-
ers (Figure 4, H and I). Nevertheless, the Kiss1™/~ embryo
was oriented properly with its embryonic-antiembryonic
axis aligned to the mesometrial-antimesometrial axis of
the Kiss1~’~ uterine horn (Figure 4, Hand 1) (21,22), and
closure of the implantation chamber around the Kiss1™*/~
embryo was clearly observed (Figure 4, H and I). Addi-
tionally, an artificial decidualization study revealed that
the hormone-primed uterus of the Kiss1~/~ mouse (n = 4)
could undergo decidualization as effectively as the WT
uterus (n = 4) (Figure 4, ] and K), suggesting the uterus
could support a pregnancy.

Lif supplementation partially rescues implantation
in hormone-primed Kiss1™/~ mice

Because events upstream of implantation (ovulation,
mating, fertilization, embryonic maturation, embryo ori-
entation in the implantation chamber, and chamber clo-
sure) and downstream of implantation (decidualization)
were all intact in E2/gonadotropin-primed/superovulated
Kiss1™/~ mice, these results collectively suggest that
Kiss1~/~ mice lack a signal required for embryonic im-
plantation. Because the Lif is essential for implantation in
mice (19, 23-25), we determined whether exogenous re-
combinant Lif, administered in conjunction with P4 and
E2 to E2/gonadotropin-primed/superovulated Kiss1 ™/~
females, could rescue the implantation defect. Examina-
tion of Kiss1 ™'~ uteri on day 10 revealed no implantations
in the five mice that received Lif 10 pg and in one mouse
that received Lif 17 pg. However, in the two mice that
received Lif 12.5 ug, two implanted and two resorbed
embryos were observed, whereas in two mice that received
Lif 17 pg, four implanted and one resorbed embryos were
observed (Table 3 and Figure 5A). Histological analysis of
a cross-section of an implantation site (from a mouse that
received Lif 17 ug) revealed the presence of a developing
embryo (Figure 5B).

Kiss1~"~ mice exhibit lower levels of Lif in
glandular lumen

Based on this Lif-dependent rescue of implantation, we
hypothesized Lif expression is reduced in the Kiss1 ™/~
female mouse and proceeded to test this. RT-PCR and
immunofluorescence analyses of gene and protein expres-
sion, respectively, in the day 4 uterus of E2/gonadotropin-
primed/superovulated WT and Kiss1 '~ females that did
not receive exogenous Lif revealed no difference in Lif
mRNA expression between Kiss1~’~ and WT hormone-
primed control females (P = .35) (Figure SC). However, at
the protein level, although both WT and Kiss1 ™/~ mice
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Figure 4. Histology and morphology of Kiss7 ™/~ and WT mice uteri. Anatomy of the representative uteri of the age-matched female mice is as follows:
untreated KO (Kiss7~/~) female mice (A), E2/gonadotropin-primed/superovulated WT female mice (B), and E2/gonadotropin-primed/superovulated KO
female mice (C) on day 5 after mating; white boxes show dilated blood vessels. Please note the different magnifications in panel A vs panels B and C.
D-F, Higher-magnification images of the uterine sections corresponding to E2/gonadotropin-primed/superovulated WT and knockout (KO) female
mice on day 5 after mating. D, Normal uterine architecture (corresponds to black outlined box in panel B) from E2/gonadotropin-primed/
superovulated WT female mice on day 5 after mating. E, Abnormal uterine architecture (corresponds to black outlined box in panel C) from E2/
gonadotropin-primed/superovulated KO female mice on day 5 after mating. F, Dilated vessels (corresponds to lower part of image shown in panel
C) of E2/gonadotropin-primed/superovulated KO female mice on day 5 after mating. G, An implanted WT embryo (enclosed within white
outlined circle) is observed near the antimesometrial (AM) pole of an E2/gonadotropin-primed/superovulated WT female mouse on day 5 after
mating. H, Nonimplanted Kiss7*/~ embryo (seen within black outlined box) is observed near the AM pole of an E2/gonadotropin-
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Table 3.
WT Male Mice

Effect of Lif Administration on Embryo Implantation in Hormone-Primed Kiss7~/~ Female Mice Mated to

Lif Number

Number of Uteri With Viable and Nonviable Implantations

Number of Uteri With

(ng) of Mice (Total Number of Viable Embryos/Total Number of Resorbed Embryos)  No Implantations
100 5 0 5
12.5 2 2 (2/2) 0
17.0 3 2 (4/1) 1

expressed Lif in the endometrium (Figure 5D) with high
levels on the luminal face of the luminal epithelium (Figure
5D, panels iii and ix), Kiss1 ™/~ mice exhibited noticeably
lower levels of Lif in the glandular lumen (Figure 5D, pan-
els vand vi vs xii and xiii). Thus, itappears that, unlike WT
mice, Kiss1 '~ secretes lower levels of glandular Lif on the
afternoon of day 4.

Discussion

The infertility of Kiss1 /" female mice has generally been
attributed to their hypogonadotropic hypogonadism. We
have now demonstrated that acute replacement of gonad-
otropins and estradiol can restore ovulation, mating, fer-
tilization, and preimplantation development, but these
mice are unable to achieve pregnancy, even after admin-
istration of progesterone and kisspeptin. This infertility
arises from defective implantation, which is due to a ma-
ternal defect because embryos transferred to a WT mouse
can implant successfully. The role of extrahypothalamic
kisspeptin signaling in regulating reproduction has been
largely recognized through indirect correlation, such as
the rapid rise in plasma kisspeptin levels during pregnancy
(9) and in vitro studies, such as those demonstrating kiss-
peptin regulates extravillous trophoblast adhesion and
migration in culture (8, 10). Our study is the first to pro-
vide direct evidence that extrahypothalamic kisspeptin
signaling regulates reproduction using an in vivo model.

Our study also identifies a previously unappreciated
but very important relationship between kisspeptin and
Lif in the mouse uterus. Lif is a member of the IL-6 cyto-
kine family, which also includes IL-6 and IL-11. In the WT
mouse, from day 1 to day 3 Lif mRNA is expressed in the
uterine epithelium, whereas on day 4, the day of receptiv-
ity, Lif is transiently and exclusively expressed in glandu-
lar epithelia (19, 23-25). Glandular Lif is then secreted
into the lumen of the uterus in which it binds the Lif re-

ceptor/gp130 heterodimeric complex on uterine epithelial
cells to phosphorylate and activate signal transducer and
activator of transcription 3, thereby triggering the expres-
sion of a number of genes critical to implantation (25). On
the afternoon of day 4, we found that within the glandular
lumen, Lif was more readily detected in the WT than
Kiss1~/~ uterus. This suggests that uterine kisspeptin sig-
naling regulates glandular Lif levels and activation of the
Lif receptor/gp130/signal transducer and activator of
transcription 3 pathway to thereby mediate embryo im-
plantation. Reduced endometrial Lif levels may also be the
result of a reduced number of uterine glands in the
Kiss1~/~ mouse, as previously reported (4).

In the Lif supplementation studies, the fact that the
rescue of implantation was only partial might be due to
inadequate penetration of Lif to the sites of implantation.
Alternatively, Kiss1~/~ female mice may lack other factors
essential for implantation. To date, in mice and rats, a
number of maternal factors have been demonstrated to be
essential for implantation. These include estrogen, P4, cy-
tokines including Lif, and growth factors including TGF-
and epidermal growth factor (26).

Surprisingly, although we could partially rescue im-
plantation in Kiss1~’~ mice with Lif, we could not do so
through chronic administration of Kp-10. Because Kp-10
is rapidly degraded in serum (27), we might have failed to
generate sufficient local concentrations needed to restore
implantation. Future studies using intrauterine adminis-
tration of Kp may overcome this potential issue.

Our study adds to prior reports on the expression of the
Kp/Kiss1r signaling system in the ovary and oviduct/fal-
lopian tube (11,28-30) and is among the first to report on
its expression in the uterus (11). Based on these expression
patterns, kisspeptin has been proposed to have direct roles
in the ovarian regulation of follicular development and
ovulation and in the prevention of tubal pregnancies re-
sulting from premature and inappropriate implantation of

Figure 4 (Continued). primed/superovulated KO female mouse on day 5 after mating. I, Nonimplanted Kiss7*/~ embryo (as seen within black
outlined box in panel H) is shown at higher-power magnification. Please note the different magnifications shown in panels G-I. J, Representative
images of uterine horns after the injection of oil into the left horn of the hormone-primed ovariectomized WT (J) (n = 4) and KO female (K) (n =
4). CM, circular muscle of the myometrium; D, endometrium; GO, gland opening to uterine lumen; LM, longitudinal muscle; M, mesometrial pole.
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hormone-primed/
Lif-supplemented mouse
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Histological analysis of a cross-section of an
implantation site confirms the presence of an
embryo and its placenta in the uterus of a D10
KO, hormone-primed/Lif-supplemented mouse
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Figure 5. Lif rescues implantation in a hormone-primed Kiss7 =/~ mouse uterus. A, Right uterine horn (RH) of a Lif-treated, hormone-primed
Kiss1~/~ mouse bears three implanted embryos, whereas the left uterine horn (LH) bears one. B, Histological analysis of a cross-section of an
implantation site confirms the presence of an embryo and its placenta. C—E, Relative to the expression of two housekeeping genes (Hprt, Sdha),
the expression of Lif (C) was determined by quantitative RT-PCR [for WT, n = 6; for knockout (KO; Kiss?~/~), n = 4], whereas the expression of Lif
was determined by immunofluorescence (D) [for WT, n = 4; for KO (Kiss7~/7), n = 4]. Error bars represent SEM. a, amnion; b, brain; gt, giant
trophoblast cells; h, heart; DIC, differential interference contrast; GE, glandular epithelium; L, lumen; LE, luminal epithelium; St, stroma; HOECHST,

nucleic acid stain that identifies nuclei.
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embryos in the oviduct (11,28 -30). However, because we
could rescue the defects in follicular development and ovu-
lation in Kiss1~/~ mice by priming with estradiol followed
by superovulation, the ovulatory defect of Kiss1 ™/~ mice
can be attributed to their hypogonadotropic hypogonad-
ism without the need to invoke a direct ovarian function
of kisspeptin, although such a role is not entirely ruled out
by the current results. Similarly, the fact that we did not
observe implantation of embryos in the oviduct demon-
strates that kisspeptin is not essential for preventing tubal
pregnancies, although again a modulatory role cannot be
excluded.

Just as male and female Kiss17~/~ mice have abnormal
sexual maturation, human patients with mutations in the
kisspeptin signaling pathway also display an absence of or
delayed pubertal development (1, 2, 6, 7, 31). Patients
with mutations in KISS1R have successfully achieved fer-
tility with either exogenous GnRH or gonadotropins, but
few data are available on the pregnancies of the few pa-
tients that have been reported. One female patient bearing
homozygous L148S mutations in KISSTR achieved preg-
nancy through the use of exogenous gonadotropins (32).
The first pregnancy, a twin pregnancy, was lost at 6
months of gestation, raising the possibility that kisspeptin
signaling is required for the maintenance of pregnancy.
However, this patient was subsequently able to carry a
singleton pregnancy to term (32). As more patients with
mutations in KISS1R are reported, closer examination of
their gonadal structure and function, fertility, pregnancy
course, and delivery will be required.

Defects in uterine receptivity account for most preclin-
ical pregnancy loss (33). Although we acknowledge that
there may be subtle to significant differences in the kiss-
peptin-dependent regulation of embryo implantation in
the mouse vs the human, our study reveals a novel and
critical role of kisspeptin signaling in the mouse and pro-
vides compelling reasons to explore this role in other spe-
cies, including livestock and humans.
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