
1 
 

Expanding the Role of Tachykinins in the Neuroendocrine Control 1 

of Reproduction. 2 

Chrysanthi Fergani and Víctor M. Navarro 3 

 4 

Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and 5 

Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115. 6 

 7 

Corresponding Author: Victor M. Navarro, PhD, Assistant Professor of Medicine, Harvard 8 

Medical School, Division of Endocrinology, Diabetes and Hypertension (Neuroendocrinology), 9 

Brigham and Women's Hospital, 221 Longwood Ave, Rm 219, Boston, MA 0211, Tel: +1 617 525 10 

6566, Fax: +1 617 582 6193, Email: vnavarro@bwh.harvard.edu.  11 

 12 

Short title: The Role of Tachykinins in Reproduction. 13 

Keywords: Tachykinins, Substance P, Neurokinin A, Kisspeptin, GnRH, Hypothalamus 14 

 15 

Contents  
Introduction………………………………………………………………………………………………………………….…. 3 
The current model for the GnRH pulse generator……………………………………………………………….……….... 6 
Anatomical studies……………………………………………………………………………………………………………. 8 
 Distribution of SP and NKA in the hypothalamus and anatomical relationship with Kiss1 and GnRH neurons... 8 

 Distribution of NK1R and NK2R in the hypothalamus and anatomical relationship with Kiss1 and GnRH 
neurons.................................................................................................................................................................. 9 

 Sex steroid regulation of SP and NKA...................................…………………………………………………………. 10 
Regulation of LH release by tachykinins: sex steroid dependent action………………….………..…………………… 11 
 Neurokinin B……………………………………………………………………………………………………………….. 11 
 Substance P……………………………………………………………………………………………………………….. 12 
 Neurokinin A……………………………………………………………………………………………………………….. 14 
Tachykinins modulate the gonadotropic axis in a kisspeptin dependent manner……………………………………… 15 
The role of tachykinins on puberty onset……...……………………………………………………………………………. 18 
Concluding remarks……………………………..…………………………………………………………………………….. 20 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LJMU Research Online

https://core.ac.uk/display/159081532?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:vnavarro@bwh.harvard.edu


2 
 

Abstract 16 

Reproductive function is driven by the hormonal interplay between the gonads and brain-pituitary 17 

axis. Gonadotropin-releasing hormone (GnRH) is released in a pulsatile manner, which is critical 18 

for the attainment and maintenance of fertility, however, GnRH neurons lack the ability to directly 19 

respond to most regulatory factors, and a hierarchical upstream neuronal network governs its 20 

secretion. We and others proposed a model in which Kiss1 neurons in the arcuate nucleus (ARC), 21 

so called KNDy neurons, release kisspeptin (a potent GnRH secretagogue) in a pulsatile manner 22 

to drive GnRH pulses under the coordinated autosynaptic action of its cotransmitters, the 23 

tachykinin neurokinin B (NKB, stimulatory) and dynorphin (inhibitory). Numerous genetic and 24 

pharmacological studies support this model; however, additional regulatory mechanisms 25 

(upstream of KNDy neurons) and alternative pathways of GnRH secretion (kisspeptin-26 

independent) exist, but remain ill defined. In this aspect, attention to other members of the 27 

tachykinin family, namely substance P (SP) and neurokinin A (NKA), has recently been rekindled. 28 

Even though there are still major gaps in our knowledge about the functional significance of these 29 

systems, substantial evidence, as discussed below, is placing tachykinin signaling as an important 30 

pathway for the awakening of the reproductive axis and the onset of puberty to physiological 31 

GnRH secretion and maintenance of fertility in adulthood. 32 

Introduction 33 

Successful production of offspring is indispensable to perpetuate species. As such, reproduction 34 

is under the control of a complex regulatory network which involves the hypothalamic-pituitary-35 

gonad (H-P-G) axis. Gonadotropin-releasing hormone (GnRH) neurons, located in the 36 

hypothalamus are a major component of the H-P-G axis and the ultimate regulators of 37 

reproductive function, including sexual behavior (Herbison 2016, Herbison, et al. 2008, Moenter, 38 

et al. 2003). Importantly, GnRH release is pulsatile, and even though GnRH neurons may display 39 
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autonomous activity (spontaneous bursts), these do not seem to correlate with GnRH/LH pulses 40 

in vivo [reviewed in (Navarro 2012)]. Furthermore, GnRH neurons lack the ability to sense most 41 

factors that influence reproductive function, such as endogenous signals [e.g. sex steroid 42 

hormones; (Hrabovszky and Liposits 2013, Radovick, et al. 2012, Roa 2013)] as well as 43 

environmental cues [e.g. stressors; (Dobson, et al. 2003)]. Thus, a large body of research is now 44 

focusing on the discovery of higher hierarchy circuits and their efficacy in stimulating GnRH 45 

secretion in to the hypophyseal portal vessels, thereby enabling gonadotropin [luteinizing 46 

hormone (LH) and follicle stimulating hormone (FSH)] secretion from the anterior pituitary in to 47 

the peripheral circulation. From then on, LH and FSH reach the gonads to stimulate 48 

gametogenesis and sex steroid production. In turn, sex steroids exert positive and negative 49 

feedback effects on pituitary and hypothalamic target cells (Herbison 1998), completing the H-P-50 

G axis. In this respect, over the past 10 years, several upstream neurophenotypes have been 51 

implicated in stimulatory and/or inhibitory regulation of GnRH secretion. 52 

The path was initially paved with the discovery that loss-of-function mutations in several 53 

neuroendocrine genes, including KISS1 and its receptor, KISS1R (Table 1), have been described 54 

to cause hypogonadotropic hypogonadism in humans (Chan, et al. 2011, de Roux, et al. 2003, 55 

Seminara, et al. 2003, Topaloglu, et al. 2012) due to a central deficit that leads to absent GnRH/LH 56 

pulses, highlighting the importance of these neural cues in GnRH release. Further anatomical and 57 

functional studies provided unequivocal evidence that kisspeptins, encoded by the Kiss1 gene 58 

(Table 1), are the most potent secretagogues of GnRH in all mammals studied to date (Oakley, 59 

et al. 2009). A number of studies by our lab and others suggest that Kiss1 neurons – which contact 60 

GnRH neurons directly - receive profuse central and peripheral regulatory inputs that modulate 61 

kisspeptin secretion for the initiation of puberty and the maintenance of fertility in adulthood 62 

(Pinilla, et al. 2012, Seminara, et al. 2003). Importantly, Kiss1 neurons also play a critical role in 63 

conveying information about the sex steroid milieu to GnRH neurons (Gill, et al. 2010, Navarro, 64 
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et al. 2004). However, kisspeptin action on GnRH neurons is necessary but not sufficient for the 65 

proper activation of GnRH neurons (Leon, et al. 2016). 66 

The development of newer, more potent and less expensive tools to screen genome sequences 67 

of affected patients is revealing a growing number of factors that appear critical for the timing of 68 

puberty onset and maintenance of fertility by regulating kisspeptin and/or GnRH/LH release. 69 

Within this constellation of neuroendocrine systems, is the one comprised by the tachykinin 70 

neurokinin B (NKB) and its receptor (NK3R), encoded by TAC3 and TACR3 in humans, 71 

respectively (Table 1). This system has received substantial attention since the identification in 72 

2009 of inactivating mutations in these genes are also associated with hypogonadotropic 73 

hypogonadism and lack of puberty onset (Topaloglu, et al. 2009, Topaloglu, et al. 2012, Yang, et 74 

al. 2012, Young, et al. 2010), resembling the phenotype of KISS1/KISS1R null patients. Moreover, 75 

the systemic administration of an NK3R antagonist (ESN364) in OVX ewes, castrated or cycling 76 

nonhuman primates as well as healthy men and women (Fraser, et al. 2015, Fraser, et al. 2016) 77 

show a partial inhibition of the reproductive axis. Indeed, numerous follow-up animal studies, 78 

confirmed that NKB is a critical stimulatory input to the GnRH network, in various species 79 

(Goodman, et al. 2014, Navarro 2013) although, interestingly, this stimulatory effect is not 80 

observed in healthy men (Narayanaswamy, et al. 2016), probably due to their circulating sex 81 

steroid levels as discussed below. However, unlike kisspeptin deficiency, the phenotype of 82 

patients lacking NKB signaling is less severe since reversal cases have been documented, in 83 

which some patients recovered reproductive function and fertility after delayed puberty (Gianetti, 84 

et al. 2010). A similar subfertile phenotype has been observed in genetically modified mouse 85 

models, where Tac2 and Tacr3 (encoding NKB and NK3R, respectively, in rodents, Table 1) had 86 

been deleted from the genome (Steiner and Navarro 2012, True, et al. 2015, Yang, et al. 2012). 87 

Therefore, it appears that the reversal phenotype in reproductive viability observed in human 88 
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individuals with TAC3/TACR3 or rodents with Tac2/Tacr3 mutations may be due to compensation 89 

by other neuronal systems.  90 

Interestingly, NKB is a member of the broader tachykinin family, which has the common C-91 

terminal sequence of Phe-X-Gly-Leu-Met-NH2 (Maggio 1988). This family also includes 92 

substance P (SP), neurokinin A (NKA), neuropeptide K (NPK), and neuropeptide γ (NPγ) (Otsuka 93 

and Yoshioka 1993, Page 2005). The vast majority of research has focused on SP, NKA and NKB 94 

which bind preferentially to the NK1R, NK2R and NK3R G-protein coupled receptors, respectively 95 

(Maggi 1995, Patacchini and Maggi 2001, Saffroy, et al. 2003). 96 

 Early studies documented a robust stimulatory action of LH release by SP in rats, rabbits and 97 

humans (Arisawa, et al. 1990, Coiro, et al. 1992, Kalra, et al. 1992, Sahu and Kalra 1992, Traczyk, 98 

et al. 1992) and recent electrophysiological studies have described potent depolarizing effects of 99 

SP and NKA on ARC Kiss1 neurons in the mouse (de Croft, et al. 2013) indicating that LH 100 

stimulation by these tachykinins involves, at least in part, a kisspeptin dependent mechanism. Of 101 

note, this study showed that, in vitro, the activation of kisspeptin neurons by NKB was completely 102 

diminished only when all three neurokinin receptor (NKR) subtype-selective antagonists were 103 

concomitantly applied in the in vitro bath (de Croft, et al. 2013). This is in line with studies carried 104 

out in vivo indicating that blockade of all 3 tachykinin receptors (but not each one of them 105 

individually) prevented the compensatory rise of LH after gonadectomy (GDX) in rats (Noritake, 106 

et al. 2011). Therefore, considerable cross reactivity exists between these receptor/ligand 107 

systems and each one of these neuropeptides is capable of eliciting responses from all three 108 

neurokinin receptors (Beaujouan, et al. 2000, Cascieri, et al. 1992, Gether, et al. 1993). In these 109 

studies, the affinities or EC50 values of each tachykinin for NK1R, NK2R, and NK3R, respectively, 110 

were reported as follows: SP_2nM, 2200nM, and 18000nM; NKA _ 16nM, 3nM, and 1300nM; and 111 

NKB_70nM, 25nM, and 4nM (Seabrook, et al. 1995). These data suggest a likely interaction of 112 

NKA with NK1R as well as NK2R, and of NKB with all 3 receptors, at relatively low concentrations. 113 
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Furthermore, it has been demonstrated in rats, that pulsatile LH secretion was suppressed by 114 

central administration of CS-003, an antagonist for all three NKRs, whereas administration of 115 

each NKR subtype-selective antagonist alone, had no effect (Noritake, et al. 2011). In this respect, 116 

several pieces of evidence will be discussed below that provide unequivocal evidence that other 117 

members of the tachykinin family, namely SP and NKA, all encoded by the TAC1 or Tac1 gene 118 

(Table 1), in humans and rodents respectively (Lasaga and Debeljuk 2011) are an important 119 

component of the integrated neuronal hypothalamic system that controls GnRH/LH secretion in 120 

mammals. 121 

The current model for the GnRH pulse generator. 122 

Kiss1 neurons are located primarily in two discrete hypothalamic nuclei: the arcuate nucleus 123 

(ARC) and the anteroventral periventricular nucleus (AVPV/PeN) in rodents (Clarkson, et al. 124 

2009) or the preoptic area in ruminants (Lehman, et al. 2010), monkeys (Luque, et al. 2011) and 125 

humans (Hrabovszky 2014). Compelling evidence suggests that Kiss1 neurons in the ARC 126 

mediate the negative feedback of sex steroids and Kiss1 expression is inhibited by estradiol (E2) 127 

and testosterone (T). By contrast, Kiss1 expression in the AVPV/PeN—almost exclusive to the 128 

female brain— is upregulated by E2 and mediate the positive feedback that leads to the female-129 

specific preovulatory GnRH/LH surge (Maeda, et al. 2007, Navarro, et al. 2004, Smith, et al. 130 

2005). Substantial in vivo and in vitro evidence points to the importance of a population of neurons 131 

located in the ARC of the hypothalamus in playing the role of the GnRH pulse generator. The 132 

notion originated from studies carried out in the ovariectomized (OVX) rhesus monkey, in which 133 

LH secretion was abolished by selective lesioning of the ARC (Plant, et al. 1978), and was further 134 

reinforced by findings that multiunit electrical activity (MUA) in the vicinity of ARC kiss1 neurons 135 

was tightly coupled LH pulses (Kawakami, et al. 1982, Ohkura, et al. 2009). In this context, Kiss1 136 

neurons in the ARC coexpress dynorphin (inhibitory) and NKB (stimulatory) referred to as KNDy 137 

neurons (Cheng, et al. 2010, Goodman, et al. 2013, Navarro 2012), which have been proposed 138 



7 
 

to act in a coordinated, reciprocal fashion to shape the pulsatile release of kisspeptin in the median 139 

eminence, which in turn induces corresponding intermittent GnRH discharges at this site (Keen, 140 

et al. 2008). This has since been demonstrated in a variety of mammals including mice (Navarro, 141 

et al. 2009), rats (Navarro, et al. 2011a), sheep (Goodman, et al. 2013), goats (Wakabayashi, et 142 

al. 2010) and monkeys (Ramaswamy, et al. 2010). In this model, NKB would stimulate kisspeptin 143 

release and dynorphin would then inhibit this release through autosynaptic loops, thus shaping a 144 

kisspeptin/GnRH/LH pulse (Keen, et al. 2008). This is supported by the anatomical findings that 145 

virtually all KNDy neurons express NK3R (Amstalden, et al. 2010, Navarro, et al. 2009, Navarro, 146 

et al. 2011b) and >90% express kappa-opioid receptor [KOR; (Weems, et al. 2016)]. Furthermore, 147 

KNDy cells are interconnected with NKB fibers within the ARC forming a tightly regulated network 148 

(Krajewski, et al. 2010, Lehman, et al. 2010, Rance and Bruce 1994). Indeed, a growing number 149 

of studies in multiple species from our lab and others support the ability of NKB -or the NKB 150 

receptor (NK3R) agonist senktide- to increase LH pulses (Goodman, et al. 2014, Grachev, et al. 151 

2012, Navarro 2013). This places the KNDy neurons as ideal candidates for the role of the GnRH 152 

pulse generator. However, more recently, several studies have provided evidence that other 153 

tachykinins, i.e., SP and NKA, merit further investigation as additional fundamental components 154 

of the current, KNDy-dominated, GnRH pulse generator model. Although no human mutations in 155 

the genes encoding SP and NKA (TAC1) or their receptors (TACR1 and TACR2, respectively; 156 

Table 1) have been correlated with reproductive disorders yet, both SP and NKA have been 157 

reported to stimulate the gonadotropic axis in several species (Arisawa, et al. 1990, de Croft, et 158 

al. 2013, Kalra, et al. 1992, Navarro, et al. 2015, Noritake, et al. 2011, Sahu and Kalra 1992) 159 

including men (Coiro, et al. 1992). It is therefore plausible to speculate that these tachykinins are 160 

involved in the central regulation of GnRH release and may be additional elements to the GnRH 161 

pulse generator.  162 
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Anatomical studies.  163 

The topographical identification of tachykinin ligands and their receptors has provided important 164 

insight in to the potential mechanisms of action of these systems for the control of GnRH/LH 165 

secretion. Several studies using in situ hybridization, immunohistochemistry and single-cell RT 166 

PCR for the detection of mRNA and protein of tachykinins and their receptors, as well as their 167 

morphological relationship to Kiss1 and GnRH neurons, have been carried out to date. However, 168 

important information, especially regarding the localization of receptors, across a large number of 169 

species, is still lacking.   170 

Distribution of SP and NKA in the hypothalamus and anatomical relationship with 171 

Kiss1 and GnRH neurons. 172 

Within the hypothalamus, the largest population of NKB immunoreactive cells has been detected 173 

in the ARC (and specifically in the middle to caudal aspects) with smaller numbers identified in 174 

the ME, POA, lateral septum, bed nucleus of the stria terminalis, amygdala and the 175 

paraventricular nucleus of rats, sheep and mice (Goubillon, et al. 2000, Navarro, et al. 2009, 176 

Rance and Young 1991). The ARC population has received most attention, as in this nucleus 177 

kisspeptin and NKB reside in the same cell (KNDy; (Goodman, et al. 2007, Navarro, et al. 2009), 178 

whereas, no instances of NKB and GnRH colocalization have been reported, although GnRH and 179 

NKB immunopositive fibers have been observed to interweave in the rat ME (Krajewski, et al. 180 

2005).  181 

In mice, Tac1 mRNA (encoding SP and NKA) has been mapped out in the brain of female mice 182 

using in situ hybridization (Navarro, et al. 2015). Within the hypothalamus, expression was found 183 

to be concentrated mainly in 2 regions: the ARC (especially the caudal aspect) and the 184 

ventromedial nucleus (VMN), in keeping with previous reports of SP immunoreactivity in rats, 185 

monkeys, and humans (Borsay, et al. 2014, Harlan, et al. 1989, Rance and Bruce 1994, Rance 186 
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and Young 1991, Ronnekleiv, et al. 1984, Tsuruo, et al. 1991, Yamano, et al. 1986). Studies 187 

employing immunohistochemical detection of SP also report a plethora of fibers that innervate the 188 

entire length of the ARC and the median eminence (ME) (Hrabovszky, et al. 2013, Kalil, et al. 189 

2015) which appear to surround the capillaries of the hypophyseal portal system indicating that 190 

SP may have the ability to act directly on the anterior pituitary (Kalil, et al. 2015).  191 

 Interestingly, even though the Tac2 (gene encoding NKB; Table 1) is known to be coexpressed 192 

within Kiss1 in the ARC of various species, including humans (Goodman, et al. 2007, Hrabovszky 193 

2014, Navarro, et al. 2009) the Tac1-positive neurons did not colocalize with Kiss1-positive 194 

neurons in the mouse [(Navarro, et al. 2015); Figure.1).  This is in agreement with equivalent 195 

investigations in the monkey (Kalil, et al. 2015) and rat (Rance and Bruce 1994) but contradict 196 

findings in the human that report approximately 65% of SP neurons in the ARC coexpress 197 

kisspeptin [conversely, 30% of Kiss1 neurons contain SP; (Hrabovszky, et al. 2013)]. The reason 198 

for this divergence is not known, however, it supports the notion for the existence of potential 199 

differences in the function of the tachykinin systems across species (Hrabovszky, et al. 2013, 200 

Kalil, et al. 2015, Navarro, et al. 2015). Nonetheless, the population of Tac1 neurons in the ARC 201 

of the mouse (Navarro, et al. 2015) and SP immunoreactive neurons and fibers in the monkey 202 

(Kalil, et al. 2015) appeared to be in close contact with Kiss1 neurons and fibers [and GnRH fibers 203 

as shown in postmenopausal women (Hrabovszky, et al. 2013)] in the ARC, presumably 204 

facilitating the interaction between all three neuronal populations.  Immunohistochemical analysis 205 

of NKA fiber colocalization with kisspeptin or GnRH afferents merits future investigation. Of note, 206 

Tac1 mRNA was not detected in the AVPV/PeN of mice (Figure. 1), the region in which the second 207 

population of Kiss1 neurons reside (Oakley, et al. 2009), however, data from other species is non-208 

existent.   209 
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Distribution of NK1R and NK2R in the hypothalamus and anatomical relationship 210 

with Kiss1 and GnRH neurons. 211 

Single cell RT-PCR analysis of the expression of all 3 tachykinin receptors (Tacr1, Tacr2, 212 

and Tacr3 mRNA; Table 1) in Kiss1 (ARC and AVPV/PeN) and GnRH neurons showed that 213 

almost half (~49%) of Kiss1 neurons in the ARC and over one-fourth (~27%) of Kiss1 neurons in 214 

the AVPV/PeN express Tacr1 mRNA, which is also present in a subset of GnRH neurons [~23%; 215 

(Navarro, et al. 2015)]. Tacr2, however, was absent from both populations of Kiss1 neurons and 216 

GnRH neurons (Navarro, et al. 2015). Finally, Tacr3 was confirmed to be present in all (100%) 217 

ARC Kiss1 neurons but minimally present (~10%) in AVPV/PeN Kiss1 neurons, as has been 218 

previously described in various species (Amstalden, et al. 2010, Navarro, et al. 2015, Navarro, et 219 

al. 2009). Of note, Tacr3 mRNA was also detected in a small subset of GnRH neurons [~11%; 220 

(Navarro, et al. 2015)] as has been previously been reported in the rat (16% of GnRH somata 221 

contained NK3R immunostaining) (Krajewski, et al. 2005). In addition, extensive colocalization 222 

between GnRH axons with NK3R positive fibers have been reported in the ME and organum 223 

vasculosum of the lamina terminalis of the rat (Krajewski, et al. 2005). Whether NK1R or NK2R 224 

is expressed in KNDy and/or GnRH neurons in other species is unknown. 225 

Taken together, these anatomical data allow us to postulate that SP can regulate GnRH secretion 226 

indirectly, via initial action on Kiss1 neurons, but also directly by acting on GnRH neurons, 227 

although functional evidence for this pathway is lacking. Furthermore, the existence of axo-axonic 228 

or axo-dendritic synapses between SP and Kiss1 or GnRH axons remains to be elucidated. In 229 

the human, where SP and kisspeptin have been shown to colocalize, autocrine/paracrine actions 230 

of SP on KNDy neurons are also probable (Hrabovszky, et al. 2013). Intriguingly, in the mouse, a 231 

subset of AVPV/PeN Kiss1 neurons are also receptive to SP actions (one fourth of these cells 232 

contain NK1R) and it is well known that this population is involved in the generation of the 233 

GnRH/LH surge (Oakley, et al. 2009). Therefore, a role for SP signaling in the shaping of the 234 
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GnRH surge is likely, but remains unexplored.  The action of NKA, on the other hand, remains 235 

largely unresolved, because Tacr2 has been identified in neither Kiss1 nor GnRH neurons, thus, 236 

suggesting the presence of unidentified intermediate upstream neurons [(Navarro, et al. 2015); 237 

Figure.1]. 238 

Sex steroid regulation of SP and NKA.  239 

All known cotransmitters present in ARC Kiss1 neurons (Kiss1, NKB, and dynorphin) are inhibited 240 

by sex steroids as part of their hypothesized role in the negative feedback upon GnRH release 241 

(Gottsch, et al. 2009, Navarro, et al. 2009). This also appears to be true for SP and NKA, as Tac1-242 

expressing neurons in the ARC and VMN of mice were downregulated by OVX and E2 treatment 243 

(Micevych, et al. 1988, Navarro, et al. 2015) and immunopositive SP protein in the ARC increased 244 

after gonadectomy (GND) in the male monkey (Kalil, et al. 2015). Furthermore, this effect 245 

appeared to be specific for these areas of the brain (Navarro, et al. 2015) and was not evident 246 

elsewhere. Similarly, SP mRNA increased in the hypothalamus of post- compared to pre-247 

menopausal women (Rance and Young 1991) and the content of SP in the ARC has been shown 248 

to increase after OVX in the rat (Tsuruo, et al. 1987). The results of all these studies suggest that 249 

downregulation of SP and NKA in hypothalamic neurons may mediate, at least in part, the 250 

negative feedback action of gonadal steroids on gonadotropin secretion. Indeed, earlier studies 251 

have demonstrated that a substantial population of SP immunoreactive cells located in the 252 

mediobasal hypothalamus of the rat are estrogen receptive (26.1% in the Arc and 42.9% in the 253 

VMN) (Akesson and Micevych 1988). Interestingly, immunohistochemical studies on human 254 

hypothalami have revealed that postmenopausal women have higher numbers of SP neurons 255 

and darker labeling than in age-matched men (Hrabovszky, et al. 2013). However, if this 256 

constitutes a sex difference in the expression of SP or it is a mere reflection of different levels of 257 

sex steroids, remains to be elucidated. In this context, an earlier report documents greater SP 258 

immunoreactivity in the medial amygdala of male compared to female rats (Micevych, et al. 1988), 259 
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an area which is also known for a greater Kiss1 population of cells in males versus females 260 

(Stephens, et al. 2016). However, the interaction between these two systems (SP and Kiss1 in 261 

the medial amygdala) has not yet been explored. Nonetheless, sex differences in the expression 262 

of SP or NKA require further characterization across multiple species. 263 

Regulation of LH release by tachykinins: sex steroid dependent 264 

action. 265 

Neurokinin B 266 

Most studies carried out to date looking into the effect of tachykinins on reproductive function 267 

have focused on the role of NKB, and less so on other members of the tachykinin family.  268 

Therefore, it is useful to compare findings from SP and NKA studies with those already carried 269 

out for NKB, as a synergistic action is highly probable. One thing that can be said about the 270 

stimulatory effect of NKB on LH release, is that it is less robust than that of kisspeptin, and 271 

inhibitory actions or null effects on LH secretion have also been documented, depending on the 272 

species and the sex steroid levels (Navarro, et al. 2011a, Ruiz-Pino, et al. 2012, Sandoval-273 

Guzman and Rance 2004). For instance, NKB induced significantly stimulatory LH responses in 274 

adult female rats and mice under physiological levels of sex steroids, whereas only adult intact 275 

male mice (but not rats) displayed LH responses to the same challenge (Navarro, et al. 2011b, 276 

Ruiz-Pino, et al. 2012). By contrast, predominant inhibitory effects of the selective NK3R agonist, 277 

senktide, have been reported in rodents with null or low sex steroids levels (Grachev, et al. 2012, 278 

Navarro, et al. 2015, Navarro, et al. 2011b), even though kisspeptins are known to stimulate 279 

gonadotropin secretion irrespective of the sex steroid milieu (Oakley, et al. 2009). From a 280 

mechanistic point of view, the inhibitory action of NKB on LH release appears to be opioid 281 

mediated, as has been shown by lack of LH inhibition by senktide in the presence of KOR agonist 282 

in rats (Kinsey-Jones, et al. 2012). In accordance, extracellular recordings from KNDy neurons 283 
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demonstrated that gonadal feedback (by both estrogen and dihydrotestosterone) attenuates the 284 

stimulatory effects of senktide on the firing rate of KNDy neurons while increasing the inhibitory 285 

effects of dynorphin by modulating the activation of NK3R and KOR (Ruka, et al. 2016). 286 

Interestingly, in the sheep, NKB/NK3R signaling may also be important in the generation of the 287 

preovulatory GnRH/LH surge. For example, intracerebroventricular (i.c.v) microinjections of 288 

senktide, in this species, results in a surge-like elevation of LH during the follicular but not the 289 

luteal phase of the ovine estrous cycle (Billings, et al. 2010, Porter, et al. 2014), replicating a 290 

potential dual effect of NKB, dependent on sex steroid levels, as observed in rodents (Navarro, 291 

et al. 2011a). These observations illustrate the complexity of the effects of NKB on the 292 

gonadotropic axis.  293 

 294 

Substance P 295 

To date, SP has largely been associated with processes unrelated to reproductive function, such 296 

as pain perception and inflammatory activity in the brain (De Felipe, et al. 1998) as well as with 297 

psychiatric disorders (Ebner and Singewald 2006). Even though SP was originally identified in 298 

the 1930’s (Lasaga and Debeljuk 2011) it is only now beginning to come in to the spotlight as a 299 

regulator of the reproductive axis. Few earlier studies aimed to investigate the effects of SP on 300 

the gonadotropic axis and report variable results (Table 2).  These include peripheral (i.v.) 301 

administration of SP for 1 hour in normal men, which induced a robust discharge of LH (Coiro, et 302 

al. 1992) and in OVX rats i.c.v specific antiserum against SP (anti-SP) decreased plasma LH, 303 

whereas synthetic SP injected i.c.v. or i.v. into OVX+E2 rats, stimulated LH release, via both routes 304 

of administration (Arisawa, et al. 1990). Other studies conducted by Kalra et al., in the 90’s (Kalra, 305 

et al. 1992) (Sahu and Kalra 1992) report null or inhibitory effects in intact and GND males, 306 

respectively, hinting at potential sex differences in the response to SP (Table 2). Further studies 307 

conducted on intact and OVX rabbits report that although the stimulatory effect of SP on LH is 308 
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sex steroid-independent, in the absence of ovarian steroids, SP is stimulatory only during the 309 

rising phase of an LH pulse (Traczyk, et al. 1992). Interest in SP has recently rekindled and 310 

studies in mice are pointing towards a clear stimulatory action on LH secretion, which appears to 311 

be independent of the sex steroid milieu Table 2; (Navarro, et al. 2015)]. In this study, the 312 

activation of NK1R with the i.c.v. administration of an NK1R specific agonist (GR73632) induced 313 

LH release in intact males, diestrous or OVX females and a 20-fold increase in OVX+E2 females 314 

(Navarro, et al. 2015). However, in rats that received the same agonist i.c.v., with the same dose, 315 

no alteration in LH levels was observed in either sex with intact gonads (Ruiz-Pino, et al. 2015) 316 

indicating a potential species difference. This notion is also supported by pharmacological data 317 

from ovary-intact anestrous ewes and OVX and OVX+E2 goats demonstrating that much higher 318 

doses of SP are needed to stimulate LH secretion compared to those needed with senktide 319 

(Goodman 2015, Yamamura, et al. 2015). 320 

In addition, a small body of literature has focused on the role of SP on the LH surge as well as 321 

sexual behavior. Intriguingly, a number of reports by Kerdelhué et al., in humans, monkeys and 322 

rats have shown variable results. Initially, a study carried out in cycling rats, investigated the 323 

effects of a subcutaneous injection of SP during proestrus, which led to a reduction of the LH 324 

surge amplitude (Duval, et al. 1996). Furthermore, this inhibitory effect was reversed with the 325 

simultaneous administration of SP and an NK1R antagonist (RP 67580) (Duval, et al. 1996). 326 

However, further studies showed a divergence in results using the NK1R antagonist (RPR 327 

100893) in OVX + E2 treated versus intact cycling monkeys. In the first study, the NK1R antagonist 328 

was administered in OVX + E2 treated monkeys causing a 50% enhancement of the LH surge 329 

(Kerdelhue, et al. 1997), supporting an inhibitory role of SP in the LH surge mechanism, similar 330 

to what was observed in the rat (Duval, et al. 1996). By contrast, the same antagonist 331 

administered during the ascending phase of plasma estradiol concentrations (prior to LH surge 332 

onset of cycling monkeys), resulted in a reduction in both the amplitude (41%) and the duration 333 

of the preovulatory LH surge (Kerdelhue, et al. 2000), providing evidence for a stimulatory role of 334 
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SP in this model. Additional detailed analysis of changes in plasma SP concentration, during the 335 

periovulatory period in women showed higher SP values during the day of the LH peak, the day 336 

of the descending phase and the day after the descending phase compared to all other stages in 337 

the menstrual cycle (Kerdelhue, et al. 2006). However, a similar study carried out in the cycling 338 

monkey, showed a decrease of plasma SP concentrations during the follicular phase leading up 339 

to the LH surge and an inverse relationship between SP and estradiol values during this time 340 

(Kerdelhue, et al. 2000). Thus, there appears to be a dual role for SP regarding the LH surge 341 

mechanism, as there have been inhibitory and stimulatory effects reported depending on species, 342 

sex steroid concentrations, as well as the timing of exposure relative to the LH surge onset. The 343 

mechanism by which SP plays a role in the events leading up to the LH surge is not clear; 344 

however, the fact that ~25% of Kiss1 neurons in the AVPV/PeN contain Tac1r provides some 345 

input on a potential involvement of SP in this process (Navarro, et al. 2015). In support of this 346 

notion, is the observation that SP stimulates LH to a greater extent in female compared to male 347 

mice (Navarro, et al. 2015), which are devoid of an AVPV/PeV Kiss1 population (Clarkson and 348 

Herbison 2006, Kauffman, et al. 2007).  349 

Precedent studies on the role of SP have also reported a potential action of SP on sexual 350 

behavior. The circuitry necessary for the expression of female sexual behavior, and specifically 351 

the estrogen-induced display of lordosis, originates from the ventro-lateral VMN (vl VMN) and 352 

projects to the midbrain periaqueductal central gray (Muntz, et al. 1980, Pfaff and Sakuma 1979, 353 

Yamanouchi, et al. 1990). A number of studies have suggested that SP may be an important 354 

participant in this circuitry, as SP injections in the periaqueductal central gray of OVX, estrogen-355 

primed rats produced a long-lasting increase of lordosis behavior (Dornan, et al. 1987) whereas 356 

SP antiserum injections in the same region inhibit the behavior (Dornan, et al. 1987). Interestingly, 357 

Fluoro-Gold injections into the dorsal midbrain labeled a large proportion (approximately 30%) of 358 

the vl VMN neurons immunoreactive for SP, in the guinea pig (Ricciardi and Blaustein 1994). 359 

Furthermore, pulsatile administration of estradiol, selectively induces the expression of 360 
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progesterone receptors in SP neurons located in this area (Olster and Blaustein 1992) and this 361 

process is necessary for the induction of lordosis (Rubin and Barfield 1983). Collectively, these 362 

results suggest that SP originating in the vl VMN may participate in the onset of lordosis behavior 363 

(Dornan, et al. 1990), however further detailed components of the anatomy and physiology of this 364 

neurocircuitry is missing.   365 

Neurokinin A 366 

By contrast, much less information is available on the other members of the tachykinin family such 367 

as NKA or its two elongated peptides, NPK and NPγ.  NKA is also encoded by the Tac1 gene in 368 

the rodent and preferentially binds to the NK2R (Beaujouan, et al. 2000). The NKA/NK2R 369 

signaling system appears to act through different regulatory mechanisms, than those identified 370 

for SP; however, it is noteworthy, that results to date have been a lot more consistent across 371 

species (Table 3). Central administration of the NK2R agonist, GR64349, displayed a NKB-like 372 

action in terms of LH release (the so called dual effect of senktide), showing inhibition in OVX 373 

mice but clear stimulation in OVX+E2 treated female and intact male mice (Navarro, et al. 2015). 374 

Similar results have been obtained by studies conducted in male and female rats (Kalra, et al. 375 

1992, Ruiz-Pino, et al. 2015, Sahu and Kalra 1992). These data indicate that NK2R and NK3R 376 

may converge on a common pathway to regulate GnRH release in a sex independent but sex 377 

steroid dependent manner making them ideal candidates to participate in the GnRH pulse 378 

generator (Table 3). In this aspect, pharmacological studies in goats (Yamamura, et al. 2015) and 379 

sheep (Goodman 2015), showed that the three NKR agonists possess the ability to induce MUA 380 

volleys and an increase in LH, respectively, albeit, with a significant difference in the efficacy to 381 

do so, as much higher concentrations of NK1R and NK2R agonists were required to have a similar 382 

effect as NKB agonist or senktide, respectively (Goodman 2015, Yamamura, et al. 2015). 383 

Therefore, a reasonable hypothesis could be that NKA (and potentially SP) participate in the pulse 384 

generator by amplifying the actions of NKB. However, this requires further investigation as 385 
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equivalent pulse studies are lacking in other species. Similar to what was previously suggested 386 

for the inhibitory action of NKB, the inhibitory action of NKA on LH release appears to also be 387 

opioid mediated, at least in the rat (Kalra, et al. 1992). It is plausible to speculate that there is a 388 

sex steroid dependent differential activation of the stimulatory (NK3R) or inhibitory receptor (KOR) 389 

after the administration of an NKA agonist in the presence versus absence of sex steroids, 390 

however, this remains to be proven.  391 

 392 

Tachykinins modulate the gonadotropic axis in a kisspeptin 393 

dependent manner. 394 

It is now well recognized that the stimulating effects of NKB on GnRH secretion are mediated 395 

primarily via initial kisspeptin stimulation. This has been demonstrated by studies that have shown 396 

that a) desensitization of the kisspeptin receptor blocks the stimulatory effect of senktide in 397 

monkeys (Ramaswamy, et al. 2011), b) senktide i.c.v administration induces c-Fos activation of 398 

kisspeptin cells in the ARC of rats (Navarro, et al. 2011a), c) as mentioned above, nearly all ARC 399 

kisspeptin cells contain NK3R receptors (Navarro, et al. 2009) and are excited by senktide/NKB 400 

(de Croft, et al. 2013), d) the stimulatory effect of senktide, is completely absent in Kiss1rKO mice 401 

(Garcia-Galiano, et al. 2012) and e) specific ablation of NK3R expressing neurons in the ARC of 402 

the rat impairs the postcastration rise in LH secretion (Mittelman-Smith, et al. 2012). The above 403 

studies clearly indicate the importance of NKB signaling on kisspeptin for GnRH stimulation. 404 

However, additional regulation of GnRH release at a different level, i.e. kisspeptin-independent 405 

action, cannot be excluded given the presence of NK1R and NK3R in a subset of GnRH neurons 406 

(Krajewski, et al. 2005, Navarro, et al. 2015)  and the reported kisspeptin-independent activation 407 

of GnRH neurons by NK3R agonists in vitro (Gaskins, et al. 2013). 408 
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In this regard, a similar mechanism of action appears to be employed by SP and NKA. Recent 409 

electrophysiological studies in a kisspeptin-green fluorescent protein mouse model, have 410 

described potent stimulatory actions of SP and NKA on ARC Kiss1 neurons (de Croft, et al. 2013). 411 

In addition, the administration of all individual tachykinin receptor agonists to mice lacking Kiss1r 412 

[Kiss1rKO mice] resulted in absent LH responses (Navarro, et al. 2015). This, taken together with 413 

the fact that 50% of KNDy neurons contain NK1R (Navarro, et al. 2015), suggests that SP is able 414 

to stimulate LH secretion by acting, at least in part, via a kisspeptin dependent mechanism 415 

(Figure. 1). Intriguingly, in a recent study on female mice, NK1R agonist (GR73632) elicited a 416 

greater LH response than that observed with an NK2R agonist [GR64349; (Navarro, et al. 2015)]. 417 

It is possible that the augmented stimulatory action of NK1R agonist on LH release is a reflection 418 

of the additional action of SP on both populations of Kiss1 neurons (ARC and AVPV/PeN) 419 

(Navarro, et al. 2015). In support of this hypothesis, the same exaggerated effect of NK1R agonist 420 

was not observed in male mice (Navarro, et al. 2015), which also lack an AVPV kiss1 neuronal 421 

population (Kauffman, et al. 2007, Smith, et al. 2005). Potential direct action on GnRH neurons 422 

however, cannot be overlooked, as at least in the mouse, a subset of GnRH neurons express SP 423 

(and NKB) receptors (Navarro, et al. 2015) and senktide can induce in vitro GnRH secretion in 424 

the ME in brain slices derived from Kiss1 knockout mice (Gaskins, et al. 2013). In this light, a very 425 

important question arises, which is also true for the action of NKB, as to which pathway is 426 

employed when (kisspeptin versus GnRH dependent pathways) and for what biological purpose. 427 

Potentially, as the majority of studies investigating the necessity of an intact Kiss1/Kiss1r signaling 428 

system in the stimulation of LH secretion by tachykinins have been carried out in the persistent 429 

hypogonadal state (primarily via the blockade of kiss1r; see above), it is plausible to speculate 430 

that the sex steroid milieu may be an important determining factor. Studies carried out with or 431 

without the presence of sex steroids and an absent Kiss1/Kiss1r system may be useful in this 432 

aspect.  The action of NKA, however, is less clear, because Tacr2 is not present in either Kiss1 433 

or GnRH neurons, while showing a kisspeptin-dependent action (Navarro, et al. 2015), thus 434 
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suggesting the presence of unidentified intermediate neurons upstream of Kiss1 neurons. 435 

Nonetheless, even though there are still major gaps in our knowledge regarding the potential 436 

mechanisms employed by each tachykinin, current data are overall, placing tachykinins in the 437 

spotlight as prime candidates for the neuromodulation of kisspeptin release. 438 

Despite substantial evidence for the hypothalamic action of tachykinins, we cannot ignore 439 

observations that suggest a direct action of SP and NKA in the pituitary. Firstly, SP fibers have 440 

been observed to surround hypophyseal portal blood capillary vessels in the ME in monkeys 441 

(Kalil, et al. 2015) and NKR’s have been shown to exist in pituitary cells in rats (Larsen, et al. 442 

1992) and sheep (Dupre, et al. 2010). Second, it has been reported that SP and NKA can 443 

stimulate LH secretion from cultured anterior pituitary cells derived from intact male rats (Kalra, 444 

et al. 1992) and hemi-pituitaries (Shamgochian and Leeman 1992), respectively. These findings 445 

however, are not consistent as the same was not observed in dispersed anterior pituitary cells 446 

harvested from female OVX+E2 rats (Arisawa, et al. 1990). Clearly, this pathway of action requires 447 

further investigation. For example, it would be interesting to evaluate whether LH secretion is 448 

stimulated after the peripheral administration of NKR agonists, but in the presence of a GnRH 449 

antagonist, to rule out any central effects on, or above, GnRH neurons that these agonists might 450 

exert by crossing the blood-brain barrier. This approach could potentially shed more light on the 451 

likelihood of a pituitary action of tachykinins.  452 

The role of tachykinins on puberty onset.  453 

The precise neuronal and endocrine mechanisms that determine the timing of puberty onset, and 454 

the subsequent achievement of reproductive capacity, remains one of the greatest unanswered 455 

questions in reproductive biology. To date, several factors from central and peripheral origins 456 

have been described to regulate the awakening of the gonadotropic axis (Ojeda and Lomniczi 457 

2014). At a neuroendocrine level, the prevailing view is that during the infantile and juvenile 458 
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periods, neurons secreting GnRH are subjected to persistent synaptic inhibition (Ojeda, et al. 459 

2010). When this inhibition is removed, GnRH secretion increases, which leads to puberty. 460 

However, it is recognized that a gain in numerous excitatory inputs to GnRH neurons is also 461 

indispensable (Ojeda and Lomniczi 2014). In this respect, both loss-of-function and gain-of-462 

function mutations in a growing number of neurotransmitters and their receptors have been 463 

described to severely impinge on the pubertal transition. As mentioned above, a number of 464 

studies have documented lack or delay of pubertal maturation in humans and mice bearing loss-465 

of-function mutations in KISS1/KISS1R or TAC3/TACR3 genes (de Roux, et al. 2003, Seminara, 466 

et al. 2003, Topaloglu, et al. 2012, Young, et al. 2010). In contrast, gain-of function mutations in 467 

KISS1R have been identified in association with central precocious puberty (Teles, et al. 2008). 468 

Therefore, kisspeptins are indispensable regulatory signals of GnRH release during puberty 469 

(Seminara, et al. 2003). In the same vein, the tachykinin NKB has been reported to stimulate 470 

kisspeptin prepubertally (Navarro, et al. 2012) and the expression of Tac2 increases before Kiss1 471 

(Gill, et al. 2012), suggesting a likely role of this tachykinin in the pubertal activation of kisspeptin-472 

GnRH secretion (Topaloglu, et al. 2009, Young, et al. 2010).  473 

The equivalent role of SP and NKA in the prepubertal increase of LH release and their contribution 474 

to the timing of puberty onset has only recently began to draw attention. A series of functional 475 

tests and genetic studies in the female mouse, have shown that SP/NK1R and NKA/NK2R 476 

signaling, appears to participate in the timing of puberty. This conclusion is derived from a study 477 

by (Simavli, et al. 2015) which has shown that 1) a selective NK1R agonist induces LH release in 478 

prepubertal females; 2) the expression of Tac1 and Tacr1 in the ARC is increased just before 479 

puberty compared to earlier or later stages of postnatal development; 3) repeated exposure to 480 

NK1R agonists prepubertally advances puberty onset, suggesting that the NK1R is already 481 

present and functional during this developmental period.  Furthermore, 4) Tac1KO female mice 482 

exhibit a significant delay in vaginal opening [defined as complete canalization of the vagina, an 483 

event that occurs with increased estrogen secretion (Caligioni 2009) and is therefore considered 484 
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an indirect maker for puberty onset] and delayed initiation of estrous cyclicity (Simavli, et al. 2015). 485 

This suggests that although E2 is produced by the ovaries in these mice, this alone may not be 486 

sufficient to trigger an LH surge during the initial phase post vaginal opening and this positive 487 

feedback may also be compromised during adulthood. Indeed, histological examination of the 488 

ovaries revealed fewer numbers of corpus lutea and antral follicles in Tac1 knockout mice. 489 

Similarly, in the rat, administration of NK1R and NK2R agonists was able to significantly increase 490 

LH release in prepubertal animals of both sexes, with NK2R agonist evoking a significantly greater 491 

response than that by NK1R agonist in both males and females (Ruiz-Pino, et al. 2015). By 492 

contrast castrated, juvenile and GnRH primed monkeys did not respond to an i.v. bolus 493 

administration of SP with an increase in LH secretion (Kalil, et al. 2015). The reason for this is not 494 

known however it may reflect a species difference. Interestingly, supporting the role of SP in the 495 

central control of puberty onset is the fact that higher SP levels detected in the brain of patients 496 

after traumatic brain injury (Gabrielian, et al. 2013, Vink and van den Heuvel 2010, Zacest, et al. 497 

2010) correlate with the significantly higher ratio of children displaying precocious puberty after 498 

traumatic brain injury (Blendonohy and Philip 1991, Kaulfers, et al. 2010). Overall, these data 499 

suggest a greater sensitivity to hypothalamic SP (and possibly NKA), at the time of puberty 500 

initiation, presumably contributing to an increase in GnRH pulses and activation of the 501 

gonadotropic axis; however, despite the compelling evidence for a central role of SP, we cannot 502 

rule out the possibility of actions of SP in other organs of the gonadotropic axis, such as the ovary 503 

(Debeljuk 2003, 2006). 504 

Concluding remarks 505 

Elucidating the neuronal mechanisms generating the GnRH pulses and surge is a prerequisite in 506 

advancing our understanding of reproductive function. This review intends to discuss the existing 507 

literature on the role of tachykinins as important components of this mechanism leading to GnRH 508 
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and therefore, LH secretion (model hypothesis; Figure 1). Overall, substantial evidence exists to 509 

support the hypothesis that tachykinins are indeed involved in the control of GnRH release, by 510 

modulating the firing of ARC KNDy neurons either directly (NKB and SP) or indirectly (NKA) to 511 

shape kisspeptin pulses (Figure 1). In addition, tachykinins, particularly SP may also act directly 512 

on GnRH and/or AVPV/PeN Kiss1 neurons to contribute to: a) the shaping of GnRH pulses, and/or 513 

b) the generation of the preovulatory LH surge. Many aspects of the physiology of the SP/NK1R, 514 

NKA/NK2R signaling systems in the context of reproduction, remain to be fully characterized. For 515 

instance, there appears to be a relative inconsistency in results between mice, rats, ruminants 516 

and monkeys in the LH response to the administration of tachykinins that may reflect anatomical 517 

and functional differences among species. In this regard, in humans SP is colocalized within a 518 

subset of KNDy neurons (Hrabovszky, et al. 2013) whereas this is not true for all other species 519 

studied to date (Kalil, et al. 2015, Navarro, et al. 2015, Rance and Bruce 1994, Rance and Young 520 

1991). Furthermore, in ruminants, a much larger dose of SP is required to stimulate LH release 521 

to a similar magnitude as an NKB agonist (Goodman 2015, Yamamura, et al. 2015), whereas in 522 

mice, similar doses of all individual NKR agonists can lead to an increase in LH (Navarro, et al. 523 

2015). However, as discussed, routes of administration, age (prepubertal versus postpubertal) 524 

and sex steroid status might be a determining factor in this aspect and must be taken in to 525 

account. Another important parameter that requires specific attention in future studies is the 526 

considerable crossreactivity that exists between these receptor/ligand systems determining the 527 

efficacy of tachykinin administration and it may be that although the three NKRs are involved in 528 

the GnRH pulse generation of KNDy neurons, the ratio of the contribution of each NKR varies 529 

among species and/or sexes. Nonetheless, this phenomenon may offer important advantages in 530 

the treatment of disorders caused by disruption of one specific system. For example, the reversal 531 

phenotype in reproductive viability observed in individuals with TAC3/TACR3 mutations (Gianetti, 532 

et al. 2010) may be due to compensation by the other tachykinin systems although this remains 533 

to be elucidated. Altogether, there is a clear need for a deeper understanding of the mechanism 534 
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of action of tachykinins. We must answer: a) whether all tachykinins participate in the generation 535 

of LH pulses, b) if there is compensation between tachykinins to exert this role and to what extent, 536 

c) whether the pathway (KNDy versus GnRH) of tachykinin action is governed by sex steroid 537 

levels and the biological role of this interaction , d) if the expression of tachykinin receptors in 538 

GnRH neurons changes (increases or decreases) in an estradiol dependent manner, e) the 539 

anatomical relationship of tachykinins and their receptors with kisspeptin and GnRH perikarya 540 

and fibers in other species, apart from the mouse, f) the sex and species differences in the 541 

response to tachykinins and the contribution of SP/NK1R signaling on AVPV/PeN Kiss1 neurons 542 

or GnRH for the occurrence of the GnRH/LH surge in the female. h) the mechanism and site of 543 

action of NKA, as well as the phenotype of the cells that contain NK2R, which appear to be 544 

surrogates for the indirect action of Tac1 on KNDy neurons. 545 

All of these unresolved questions are fundamental to understanding the mechanisms that govern 546 

GnRH release in mammals, and the outcome of studies such as these may prompt a change in 547 

the thinking of the current models of GnRH pulse generation. Moreover, expanding the current 548 

model will have tremendous clinical potential in humans, since there is a large number of disorders 549 

associated with dysregulation of GnRH release - e.g. delayed and precocious puberty, polycystic 550 

ovarian syndrome, hormone-dependent tumors - that could be treated in a more physiological 551 

and effective manner. 552 
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Figure legends. 562 
 563 

Figure 1. Schematic representation of a hypothalamic neuronal network comprising Kiss1 564 

neurons, GnRH neurons and Tac1 neurons in the mouse. Percentage data depicting the co-565 

expression of each receptor at each neuronal population as observed in studies carried out in 566 

mice using single cell RT-PCR (Navarro, et al. 2015). ARC Kiss1 neurons (KNDy neurons) are 567 

able to respond to NKB and half of them can also respond to SP. A subset of AVPV/PeN Kiss1 568 

neurons also expresses the receptor for SP (NK1R) and a small fraction of them also express 569 

NKB receptor (NK3R). In addition, GnRH neurons, which respond primarily to kisspeptin, express 570 

SP and NKB receptors in small numbers. Finally, NKA must act on yet unknown intermediate 571 

neurons to stimulate kisspeptin release. Note: the location of the receptors in the cell (soma vs 572 

terminals) in this model, as well as the location of NKA-responsive neurons, is merely 573 

hypothetical.  574 
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