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Abstract Social interactions are often powerful drivers of learning. In female mice, mating

creates a long-lasting sensory memory for the pheromones of the stud male that alters

neuroendocrine responses to his chemosignals for many weeks. The cellular and synaptic correlates

of pheromonal learning, however, remain unclear. We examined local circuit changes in the

accessory olfactory bulb (AOB) using targeted ex vivo recordings of mating-activated neurons

tagged with a fluorescent reporter. Imprinting led to striking plasticity in the intrinsic membrane

excitability of projection neurons (mitral cells, MCs) that dramatically curtailed their responsiveness,

suggesting a novel cellular substrate for pheromonal learning. Plasticity was selectively expressed

in the MC ensembles activated by the stud male, consistent with formation of memories for specific

individuals. Finally, MC excitability gained atypical activity-dependence whose slow dynamics

strongly attenuated firing on timescales of several minutes. This unusual form of AOB plasticity may

act to filter sustained or repetitive sensory signals.

DOI: 10.7554/eLife.25421.001

Introduction
Chemical cues detected by the vomeronasal system convey vital social information, influencing

diverse behaviors such as reproduction (Bruce and Parrott, 1960; Kimchi et al., 2007), pair bond-

ing (Young and Wang, 2004), parental care (Dulac et al., 2014; Kendrick et al., 1992; Lévy et al.,

2004), individual recognition (Hurst, 2009), and aggression (Chamero et al., 2007; Stowers et al.,

2002). Vomeronasal pathways directly access the limbic system, consistent with their powerful role

in guiding behavior, and also influence neuroendocrine centers to modify physiological and hor-

monal status (Dulac and Torello, 2003; Tirindelli et al., 2009).

While vomeronasal circuits often elicit stereotyped behavioral and neuroendocrine responses,

they can also be highly plastic. In one striking example, female mice imprint on the pheromones of

the stud male after mating, where a single salient sensory experience drives long-term changes in

both behavior and the flow of sensory information to central targets (Keverne and Brennan, 1996).

During the first few days after fertilization, chemosignals from unfamiliar males typically block preg-

nancy by altering the female’s neuroendocrine state (Bruce and Parrott, 1960). However, mating

opens a plasticity window that creates a recognition memory for the stud’s pheromones, so that

they lose their potency and no longer disrupt embryo implantation (Brennan and Keverne, 1997).

Memories are formed within hours, yet last weeks or longer (Kaba and Keverne, 1988). Sensory

imprinting thus offers an opportunity to test the neural basis of a natural form of social learning in a

circuit intimately coupled with intraspecies behaviors.

While social experience acts on diverse neural circuits throughout the brain (Wallace et al., 2009;

Wu et al., 2014), mating-dependent learning is strongly linked to plasticity in the accessory olfactory

bulb (AOB). Imprinting in females leads to local neurochemical changes (Brennan et al., 1995), is

affected by local lesions or pharmacological interventions (Brennan and Keverne, 1997;

Kaba et al., 1994; Kaba and Keverne, 1988), and can be artificially induced by manipulating AOB
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signaling (Kaba et al., 1994). Pheromonal cues are encoded in AOB by the firing of mitral cells

(MCs), whose activity signals gender, hormonal status, and in particular, strain and/or individual iden-

tity (Ben-Shaul et al., 2010; Luo et al., 2003; Tolokh et al., 2013). Well-established theories pro-

pose that learning selectively suppresses the firing of the MCs encoding the stud male so that his

pheromones no longer drive neuroendocrine responses, precluding pregnancy block

(Brennan, 2004; Brennan et al., 1990). MC suppression is further proposed to depend on strength-

ening of local inhibitory circuits in AOB, consisting largely of granule cells (GCs) that supply feedback

inhibition to MCs through unique dendrodendritic synapses (Isaacson and Strowbridge, 1998;

Shepherd and Greer, 1998). Inhibitory plasticity is consistent with both microdialysis data

(Brennan and Binns, 2005; Brennan et al., 1995) and ultrastructural changes in local interneurons

(Matsuoka et al., 1997, 2004).

Despite well-established models of learning in AOB, many key features of plasticity remain

untested. To date, direct measurements of either synaptic plasticity or changes in MC output are

lacking. Furthermore, while the selectivity of recognition memories for different individual or strains

is thought to rely on changes in specific groups of MC, there are no data linking plasticity to func-

tionally defined cell populations. More broadly, the nature of the neural changes that allow for adap-

tive changes in social behavior remain poorly understood.

Here, we examined how mating affects local AOB microcircuits using targeted whole-cell record-

ings of identified neurons activated by the stud male in ex vivo brain slices. We found pronounced

reductions in the sensitivity of AOB neurons, which unexpectedly were mediated by changes in

intrinsic excitability rather than synaptic strength, suggesting a novel cellular basis for encoding sen-

sory memories in AOB. MC firing was selectively attenuated in stud-activated neurons, suggesting a

eLife digest To navigate social situations, humans and other animals need to remember who

they have interacted with and how it went, and adjust their behavior in future encounters

accordingly. For example, your physical actions, and even your body’s physiological responses, will

be very different when you encounter the last person you kissed instead of the last person you

fought with (assuming this is not the same person!).

Memories of social interactions can have dramatic consequences. For instance, male mice often

kill the offspring of other males. Female mice appear to have adopted a countermeasure to avoid

losing a litter of pups to such aggression: they will spontaneously abort a pregnancy when exposed

to chemicals called pheromones from unfamiliar males. However, when the female mouse is

exposed to the pheromones of the male she mated with she maintains her pregnancy. Exactly how

the memories of previous social interactions with the males affect the female’s pheromone

responses is not fully understood.

To investigate how the female is able to respond differently to different males, Gao et al.

recorded the activity of individual neurons taken from the brain tissue of female mice who had

recently mated. The recordings showed that previous social experiences produce learning-related

changes in the brain of the female mouse that reduce how sensitively pheromone-detecting neurons

respond to the chemical cues of the male mate. This suppresses the signals that the neurons would

otherwise send to trigger an abortion in response to male pheromones.

Gao et al. also used fluorescent tags to identify which neurons in the female’s brain had been

activated during mating. This revealed that only those neurons that had been activated by the mate

become unresponsive when the cells again encountered his pheromones. This suggests that a set of

neurons in the female’s brain records the chemical ‘fingerprint’ of the mate, and can then selectively

filter out that mate’s pheromone signals.

Many other social interactions, such as parenting, are also strongly shaped by experience. The

results presented by Gao et al. may therefore offer wider lessons for understanding how the brain

targets different behaviors toward specific individuals. It will also be important to investigate how

highly arousing experiences cause such powerful memories to form. This could ultimately help us to

better understand – and potentially treat – conditions like post-traumatic stress disorder.

DOI: 10.7554/eLife.25421.002
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potential basis for the specificity of pheromonal learning. Changes in MC responsiveness emerged

only when they were activated with repetitive patterns, suggesting that after learning the AOB may

dynamically filter repetitive sensory signals from the stud male, lessening their impact on neuroendo-

crine status on long timescales.

Results

Slow, powerful self-inhibition in AOB MCs
While inhibitory circuits are intensively studied in main olfactory bulb (Isaacson and Strowbridge,

1998; Shepherd and Greer, 1998), their role in shaping AOB output is not well characterized. We

thus began by characterizing self-inhibition in AOB projection neurons, mitral cells (MCs). MC self-

inhibition arises from specialized dendrodendritic synapses shared with local interneurons, primarily

granule cells (GCs) (Figure 1A). We assessed self-inhibition by driving MC firing with current injec-

tion and examining the resulting synaptic feedback from interneurons. Brief, high-frequency spike

Figure 1. AOB MCs express robust, slowly emerging self-inhibition. (A) Schematic of dendrodendritic self-inhibition pathway in MCs. (B) Left, dye-filled

MC imaged after recording. S, soma; d, dendritic tufts that integrate sensory inputs; p, recording pipette. Right, brief, high-frequency spike trains

trigger modest self-inhibition (gray, standard ACSF; black, after blocking inhibition with 15 mM BMI; IPSP, inhibitory postsynaptic potential). (C)

Pharmacologically isolated self-inhibition in AOB MCs. Colored traces show individual cells; black trace, average; mean Vinh = �1.4 ± 0.27 mV (n = 8

cells in 5 mice). (D,E) Prolonged firing elicits robust MC self-inhibition in AOB but not MOB (black and purple respectively). Boxes show expanded view

of barrages of IPSPs in AOB MCs, indicated by arrowheads, which only emerge after several seconds of firing. (F) Self-inhibition contributes to stronger

decay of MC firing rates in AOB during extended stimuli (n = 9 and 9 cells in 5 and 5 mice for AOB and MOB respectively). (G) Initial and final firing

rates during MC spike trains in MOB and AOB (purple and gray respectively).

DOI: 10.7554/eLife.25421.003

The following source data and figure supplement are available for figure 1:

Source data 1. This spreadsheet contains the initial and final firing rates for the individual neurons shown in Figure 1G.

DOI: 10.7554/eLife.25421.004

Figure supplement 1. Robust self-inhibition regulates spiking of AOB MCs.

DOI: 10.7554/eLife.25421.005
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trains generated only modest feedback inhibition in AOB (Figure 1B–C), comparable but smaller on

average than reported in main olfactory bulb (Abraham et al., 2010; Margrie et al., 2001). How-

ever, pronounced inhibition appeared when we drove MCs with prolonged stimuli similar in duration

to chemosensory responses, which can last for tens of seconds (Luo et al., 2003). Extended MC

spike trains elicited slowly emerging but robust barrages of inhibitory postsynaptic potentials (IPSPs)

that contributed to a strong decline in firing rate (Figure 1D–1F; Figure 1—source data 1). In con-

trast, the same protocol generated little detectable inhibition in MCs of the main olfactory bulb,

where high firing rates were sustained throughout the train. To confirm that synaptic self-inhibition

shapes MC output, we eliminated dendrodendritic feedback pathways by blocking fast synaptic

transmission with NBQX, APV, and gabazine (5, 25, and 10 mM respectively). Pharmacologically elim-

inating feedback inhibition typically increased MC firing as well (Figure 1—figure supplement 1).

Together, our results suggest that MC self-inhibition is substantially stronger in AOB than in main

olfactory bulb, but also unusually slow to manifest, consistent with the prolonged sensory responses

characteristic of this brain area. Such powerful self-inhibition by single MCs could potentially provide

a basis for cell-specific control over AOB output, as previously proposed (Brennan and Keverne,

1997).

Mating enhances synaptic inhibition in AOB
Microdialysis suggests increased bulk GABA release in AOB after mating (Brennan and Binns,

2005), consistent with enhanced inhibition, but the synaptic correlates of imprinting have not been

measured directly. We next examined the effects of pheromonal learning on local inhibitory circuits.

To align the timing of mating with brain slice recordings (Figure 2A), we induced estrus using ovari-

ectomy, implanted estradiol capsules, and progesterone injection (Ström et al., 2012). We then

paired females in their home cage with sexually experienced males for 4 hr to provide the mating

and sensory exposure required for imprinting. Females engaged in frequent, repetitive investigation

of males, particularly of facial and anogenital regions (Figure 2—figure supplement 1A–C; mean

interval, 62.1 ± 7.99 s; median, 15.9 s). Investigative behavior was elevated in mated relative to sen-

sory-exposed females, suggesting that they experienced both heightened arousal states and

increased levels of sensory input during the pairing period (Figure 2—figure supplement 1D).

Immediately following mating and sensory exposure, we prepared AOB brain slices from females

and examined changes in synaptic inhibition with whole-cell voltage-clamp recordings of MCs. We

compared three groups: (i) mating plus sensory experience with a freely moving male; (ii) sensory-

exposed controls without mating; and (iii) naı̈ve mice with no prior male exposure, housed overnight

in a fresh cage. We measured GABAergic input onto MCs by recording miniature inhibitory postsyn-

aptic currents (mIPSCs; Figure 2B). IPSCs were pharmacologically isolated with 5 mM NBQX, 25 mM

APV, and 1 mM TTX (Figure 2—figure supplement 2). The frequency of mIPSCs was strongly

increased in mated animals vs. naı̈ve and sensory-exposed groups (Figure 2C–D; 2.45 ± 0.37 Hz vs.

1.48 ± 0.21 Hz and 1.28 ± 0.17 Hz respectively). The mean amplitude of mIPSCs was similar for all

three conditions, suggesting little change in the postsynaptic sensitivity of inhibitory synapses onto

MCs (Figure 2E–F; 56.8 ± 3.5 pA, 54.5 ± 3.8 pA, and 65.8 ± 6.1 pA for naı̈ve, sensory-exposed and

mated mice respectively; Figure 2—source data 1). The distribution of amplitudes was shifted

towards higher values, however, indicating that a subset of inhibitory synapses may be strength-

ened. Overall, mating experience substantially increased inhibitory input onto MCs, consistent with

prior microdialysis results (Brennan et al., 1995).

Because imprinting may act on other elements of the self-inhibition pathway, we also asked

whether mating alters excitatory input to granule cells, the most numerous interneurons in AOB.

Using current clamp recordings from GCs, we measured the amplitude and frequency of spontane-

ous excitatory postsynaptic potentials (sEPSPs; Figure 2G). The frequency of sEPSPs was elevated in

mated relative to naı̈ve and sensory-exposed females (Figure 2H–I; 4.25 ± 0.71, 3.57 ± 0.56, and

6.61 ± 0.63 Hz for naı̈ve, exposure and mated groups respectively). EPSP amplitude was also slightly

enhanced in mated compared to naı̈ve animals (Figure 2J–K, 1.08 ± 0.08, 1.18 ± 0.10, and

1.44 ± 0.10 mV for naı̈ve, exposed, and mated groups respectively). These differences were consis-

tent across a wide range of EPSP detection criteria (Figure 2—figure supplement 3). Overall, learn-

ing also increased excitatory drive onto GCs, enhancing both presynaptic and postsynaptic elements

of glutamatergic synapses. Together, our data suggest that imprinting upregulates both the excit-

atory and inhibitory components of the pathways for MC self-inhibition.
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Figure 2. Imprinting drives synaptic plasticity in both MCs and GCs. (A) Schematic of timeline for mating, sensory

experience, and recording. (B) Inhibitory synaptic inputs recorded in voltage-clamped MCs from naı̈ve, sensory-

exposed, and mated mice. (C,D) Mating substantially increases mIPSC frequency. Left, cumulative interval

distributions; mated < naı̈ve and exposed groups, p=0.002 and 0.001 respectively. Right, mean frequency

(F = 5.88; Fc = 3.20; p=0.005 for mated vs. naı̈ve; ANOVA with post-hoc Tukey test; n = 18, 17, and 15 cells in 5, 5,

and 6 mice respectively). (E,F) The mean amplitude of mIPSCs was not significantly changed by imprinting

(F = 1.74; Fc = 3.20; p=0.19; ANOVA with post-hoc Tukey test), although distributions were significantly

shifted towards smaller values in the mated vs. naı̈ve and sensory-exposed groups (p=0.00007 and 3 � 10�7

respectively. (G) Example traces showing spontaneous EPSPs in GCs from naı̈ve, sensory-exposed and mated

mice. Rasters indicate synaptic events used for analysis. (H,I) Mating increased mean sEPSP frequency relative to

both naı̈ve and sensory-exposed animals (F = 6.64; Fc = 3.14; p=0.00037 and 0.038 for mated vs. exposed and

naı̈ve mice respectively; ANOVA with post hoc Tukey test; n = 17, 19, and 30 cells in 5, 9, and 12 mice). Interval

distributions were significantly smaller for mated vs. exposed and naı̈ve animals (p=1�10�11 and 0.0008

respectively). (J,K) Mating also increased mean sEPSP amplitude in mated vs. naı̈ve animals. Left, cumulative

distribution; right, mean amplitude (F = 3.56; Fc = 3.14; p=0.037 for naı̈ve vs. mated, ANOVA with post hoc Tukey

test). Amplitude distributions were larger for mated vs. naı̈ve mice (p=0.04). NS, not significant; *p<0.05;

**p<0.001.

DOI: 10.7554/eLife.25421.006

Figure 2 continued on next page
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Synaptic plasticity lacks cellular selectivity
Pheromonal recognition memories are specific to particular individuals or strains, implying that learn-

ing may act selectively on the particular AOB neurons activated by the stud’s chemosignals

(Keverne and Brennan, 1996). To test the cellular specificity of plasticity, we identified the AOB

neurons activated during mating and sensory exposure using GFP reporter lines based on the pro-

moters for the immediate-early genes Arc and Fos (Reijmers et al., 2007; Wang et al., 2006). We

then used fluorescence-guided recordings (Barth, 2007) to evaluate cellular and synaptic changes

specifically in the neural population activated during mating.

We focused first on interneurons, which were robustly labeled in Arc-GFP animals. Prior to

recording, we assessed GFP labeling across the GC population with 2-photon microscopy. Naı̈ve ani-

mals showed low levels of background GFP expression (Figure 3A), and 4 hr of sensory exposure to

a male in the absence of mating produced little additional labeling over background (Figure 3—fig-

ure supplement 1A). However, mating combined with subsequent sensory exposure drove strong

GFP expression in a subset of GCs, consistent with Arc immunolabeling in AOB in response to con-

specifics (Halem et al., 2001; Matsuoka et al., 2002). We found robust labeling in both anterior

and posterior AOB, in agreement with prior reports using histochemical staining (Brennan et al.,

1992; Halem et al., 2001). Fluorescent activity reporters therefore identify mating-activated neural

populations in live AOB tissue for targeted ex vivo electrophysiological measurements.

Using fluorescence-guided recordings of GFP-labeled GCs (Figure 3B), we asked whether the

synaptic plasticity generated by mating was specific to these neurons. Unexpectedly, there was no

difference between GFP(-) and GFP(+) populations of GCs for either amplitude or frequency of

spontaneous excitatory input (Figure 3C–D; amplitude, 1.43 ± 0.15 vs 1.48 ± 0.13 mV; frequency,

7.13 ± 0.98 vs. 6.41 ± 0.84 Hz for unlabeled and labeled cells respectively; Figure 3—source data

1). Similarly, there was no significant relationship between the intensity of GFP expression and either

amplitude or frequency of EPSPs (Figure 3E–F). These data suggest that mating globally increased

synaptic drive onto inhibitory GCs without apparent specificity to the neurons activated by the stud

male.

AOB output is relayed to behavioral and neuroendocrine centers by MCs, suggesting that mem-

ory specificity ultimately relies on changes in these neurons. Because MCs were only weakly labeled

by Arc-GFP, we used an alternative Fos-GFP reporter line (Reijmers and Mayford, 2009). Fos-GFP

levels were low in MCs from naı̈ve females, but were robustly elevated in a subset of MCs after mat-

ing (Figure 3G; Figure 3—figure supplement 1B). Fos-GFP also provided more extensive labeling

of GCs, suggesting that it captured similar sets of activated neurons, but at a lower threshold. As in

Arc-GFP animals, we found no systematic differences in MC labeling in anterior vs. posterior AOB. In

mated females, approximately 28% of detected MCs were classified as GFP(+) (intensity 4X greater

than neuropil), but this is likely an overestimate due to difficulty in detecting unlabeled cells with live

tissue imaging.

To correlate inhibitory plasticity with activation of MCs by the stud male, we repeated our meas-

urements of GABAergic input using fluorescence-guided recordings (Figure 3H). This second data-

set revealed a similar two-fold increase in mIPSC frequency in mated vs. naı̈ve animals, with no

change in amplitude (Figure 3—figure supplement 1C–H; frequency, 0.86 ± 0.14 vs.1.68 ± 0.17 Hz;

amplitude, 58.02 ± 5.59 vs. 63.21 ± 5.53 pA for naı̈ve vs. mated respectively). We evaluated the

Figure 2 continued

The following source data and figure supplements are available for figure 2:

Source data 1. This spreadsheet contains the mean frequency and amplitude data for the individual neurons used

to generate the bar plots shown in Figure 2D and F (mitral cell mIPSCs) and 2I and 2K (granule cell mEPSCs).

DOI: 10.7554/eLife.25421.007

Figure supplement 1. Mating and sensory interactions during pairing.

DOI: 10.7554/eLife.25421.008

Figure supplement 2. Pharmacologically isolated inhibitory synaptic currents in MCs.

DOI: 10.7554/eLife.25421.009

Figure supplement 3. Synaptic effects in GCs are independent of event detection criteria.

DOI: 10.7554/eLife.25421.010
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Figure 3. Synaptic plasticity is uncorrelated with activation during mating. (A) Arc-GFP labeling of AOB GCs

activated by the stud male, visualized with live-tissue 2-photon imaging. Left, naı̈ve control animal; right, mated

female. (B) Fluorescence-targeted recordings of both unlabeled and labeled populations of GCs. (C,D) Mean

amplitude and frequency of sEPSPs are similar for GFP(-) and GFP(+) GCs in mated mice (amplitude: p=0.82;

frequency, p=0.58; t-test; n = 9 and 13 cells in 10 mice, GFP(+) and (-) groups subdivided from data in Figure 3—

figure supplement 1). (E,F) GFP labeling is uncorrelated with either amplitude or frequency of spontaneous

excitatory input to GCs (regression slope not different from zero; amplitude: p=0.70 and 0.22 for sensory-exposed

and mated groups respectively; frequency: p=0.50 and 0.92; linear regression t-test; n = 17, 19 and 30 neurons in

5, 9, and 12 mice for naı̈ve, exposure and mated groups). (G) Fos-GFP labeling reveals a subpopulation of mating-

activated MCs (arrowheads). (H) Targeted recordings of stud-activated MCs. (I,J) Mean amplitude and frequency

of mIPSCs are not significantly different between GFP(-) and GFP(+) MC populations (p=0.33 and 0.38 respectively;

t-test; n = 8 and 5 cells in 5 mice; groups subdivided from data in Figure 2). (K,L) Amplitude and frequency of

mIPSCs show no correlation with Fos-GFP intensity in MCs (regression slope not different from zero; p=0.64 and

0.97 respectively; linear regression t-test; n = 16 neurons from 5 mice). Dashed lines show 95% confidence

intervals.

DOI: 10.7554/eLife.25421.011

Figure 3 continued on next page
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cellular specificity of synaptic changes within mated females by subdividing the second MC dataset

into stud-activated GFP(+) neurons and a corresponding GFP(-) population. Similar to interneuron

results, there was no significant difference in mean amplitude and frequency of mIPSCs between

GFP(-) and GFP(+) MCs (Figure 3I and J; amplitude, 65.98 ± 8.15 vs. 57.86 ± 3.15 pA for unlabeled

and labeled cells respectively; frequency, 1.43 ± 0.18 vs. 1.83 ± 0.31 Hz). Furthermore, there was no

apparent correlation between GFP levels and properties of mIPSCs (Figure 3K and L). However, we

cannot exclude the possibility that a larger sample may have revealed differences. Together, these

results further indicate that imprinting drives synaptic plasticity in AOB inhibitory circuits. In contrast

with established learning models, however, synaptic changes were widely distributed across both

GC and MC populations with no apparent relationship to activation during mating.

Mating enhances interneuron excitability
The lack of specificity in synaptic plasticity suggested that AOB output may be shaped by alternative

mechanisms. One possibility is changes in intrinsic membrane excitability, which will alter the recruit-

ment of AOB neurons by shifting the threshold for generating action potential firing. We tested for

learning-induced changes in membrane excitability in AOB using graded current injections, focusing

first on interneurons.

The responsiveness of GCs in Arc-GFP females was enhanced after mating, so that less current

was needed to initiate firing, and higher firing rates were produced by the same current steps

(Figure 4A–B). Increased excitability was also reflected in GC resting potentials, which were consis-

tently depolarized in mated versus naı̈ve animals (Figure 4C, �72.1 ± 1.6, –71.0 ± 1.6, and �66.3 ±

1.2 mV for naı̈ve, exposed, and mated groups respectively). Other properties, such as membrane

resistance and slope of the input-output firing function, were unchanged across groups (Figure 4D,

Rinput = 469 ± 35 vs. 520 ± 34 for naı̈ve and mated groups; p=0.31; ANOVA with post-hoc Tukey

test), suggesting that increased GC responsiveness was largely determined by resting potential.

Overall, mating increased the intrinsic excitability of AOB interneurons, suggesting that synaptic

plasticity in inhibitory circuits is complemented by additional non-synaptic mechanisms.

To test whether changes in excitability were specific to mating-activated GCs, we examined the

relationship between resting potential and Arc-GFP labeling. As with synaptic measurements, GC

resting potential was uncorrelated with GFP intensity (Figure 4E). Furthermore, when we subdivided

the GC dataset from mated animals into GFP(-) and GFP(+) populations, mean resting potential was

similar for the two groups (Figure 4F; �67.0 ± 2.2 vs. �65.4 ± 1.9 mV respectively; Figure 4—source

data 1). Together, the increased GC excitability after mating indicates that learning acts on intrinsic

as well as synaptic properties of AOB neurons. However, intrinsic plasticity was widespread across

interneurons, and lacked dependence on prior activation during mating.

Mating attenuates MC responsiveness to repetitive stimuli
Because information about strain and individual identity is ultimately conveyed by MCs (Arnson and

Holy, 2013; Ben-Shaul et al., 2010; Luo et al., 2003), the effects of learning should ultimately be

reflected in their firing patterns. To further evaluate mating-dependent changes in AOB output, we

compared responses to current injection in MCs from naı̈ve and mated female Arc-GFP mice. In

both groups, MCs responded to current injection with robust firing that decayed during the step

(Figure 5A). In contrast to GCs, however, mating had no apparent effect on MC responses to a sin-

gle stimulus. We found no difference in peak firing rate, total spike count during the train, or decay

of firing between naı̈ve and mated females (Figure 5B–D; peak firing: 15.0 ± 3.0 Hz vs. 17.4 ± 1.8

Figure 3 continued

The following source data and figure supplement are available for figure 3:

Source data 1. This spreadsheet contains the mean frequency and amplitude data for the individual neurons used

to generate the bar plots shown in Figures 3C, D, I and J, comparing synaptic inputs to GFP(-) and GFP(+) neurons.

DOI: 10.7554/eLife.25421.012

Figure supplement 1. Mating increases fluorescent labeling in AOB and increases inhibitory synaptic input onto

MCs.

DOI: 10.7554/eLife.25421.013
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Hz; total spike count: 153 ± 28 vs. 176 ± 25 for naı̈ve vs. mated respectively; Figure 5—source data

1). Despite robust increases in inhibitory input, therefore, MC firing for a single stimulus was

unchanged.

Although immediate effects on MC output were not apparent, we further probed for changes

over longer time periods. The hormonal changes that induce pregnancy block require prolonged

AOB activity lasting several hours (Li et al., 1994; Rosser et al., 1989), timescales that typically

encompass multiple sensory interactions (Hull and Dominguez, 2007). To approximate repeated

activation of vomeronasal inputs (see Figure 2—figure supplement 1), we probed MCs with repeti-

tive stimuli spanning several minutes (ten current injections, 20 s in duration, repeated every 60 s).

Surprisingly, in mated females MC firing often declined dramatically across successive trials, so that

even neurons initially responding with hundreds of action potentials ceased firing entirely

(Figure 5E). While firing also declined in some neurons from naı̈ve animals, MC attenuation was

greatly enhanced after imprinting, so that average spike counts in mated females dropped to less

Figure 4. Experience alters intrinsic excitability of interneurons. (A) Representative responses to graded current

injection for GCs from naı̈ve, sensory-exposed and mated mice. (B) Current-firing plot shows a shift towards

increased excitability of GCs from both mated and sensory-exposed females. (C) GC resting membrane potential

was significantly hyperpolarized after mating (p=0.008 for mated vs. naı̈ve; ANOVA with post-hoc Tukey test;

F = 5.18; Fc = 3.14; n = 17, 19, and 31 cells from 5, 9, and 12 mice for naı̈ve, sensory-exposed, and mated groups

respectively). (D) The slope of the current-firing function was similar across groups (0.28 ± 0.01, 0.27 ± 0.02, and

0.28 ± 0.01; F = 0.14; Fc = 3.15; p=0.87; ANOVA with post-hoc Tukey test). (E) GC resting potential was

uncorrelated with intensity of Arc-GFP labeling in both sensory-exposed and mated animals (slope not significantly

different from zero; p=0.87, 0.37 and 0.81 for naı̈ve, sensory-exposed and mated groups respectively; linear

regression test; n = 17, 19 and 31 cells in 5, 9 and 12 mice). (F) In mated females, resting potential was

indistinguishable between GFP(-) and GFP(+) GCs (�66.8 ± 2.19 vs. �65.4 ± 1.85 mV respectively; p=0.62, t-test;

n = 10 and 13 cells in 10 mice, subdivided from the mated group in panel E). NS, not significant; *p<0.01.

DOI: 10.7554/eLife.25421.014

The following source data is available for figure 4:

Source data 1. This spreadsheet contains the resting membrane potential and firing rate data for the individual

neurons used to generate the bar plots shown in Figures 4C, D and F.

DOI: 10.7554/eLife.25421.015
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than half than that of controls (Figure 5F–G; 80 ± 11% vs. 36 ± 8%). Together, our data indicate that

mating leads to an unusual form of plasticity in MC membrane properties, where firing gains a strik-

ing dependence on recent history of activity. This metaplasticity in intrinsic excitability offers an alter-

native mechanism for attenuating AOB output, dramatically suppressing MC firing to repetitive

stimuli and curtailing their responsiveness on timescales of minutes.

Changes in excitability are specific to stud-activated MCs
To account for individual-specific recognition memories, AOB plasticity is predicted to be expressed

selectively in the MC ensemble activated by the stud. Because targeted MC recordings were pre-

cluded by weak labeling in Arc-GFP mice, we tested for selective changes in excitability by collecting

a second dataset using the Fos-GFP reporter. Within mated females, we compared responses of

labeled MCs with unlabeled cells that presumably represent other, non-stud chemosignals. Mating

drove robust increases in Fos-GFP relative to sensory-exposed controls, generating detectable label-

ing in approximately 25% of MCs (Figure 3—figure supplement 1B). After mating, both labeled

and unlabeled MCs fired similarly to initial stimuli, consistent with responses in Arc-GFP mice

(Figure 6A–D; peak firing rate, 15.2 ± 3.2 Hz vs. 16.2 ± 2.4 Hz; total spike count, 155 ± 39 vs.

133 ± 26 for GFP(-) and GFP(+) respectively; Figure 6—source data 1). We again used repetitive

stimulation to probe for cell-specific plasticity in MC responsiveness. In unlabeled MCs, firing was

stable across trials, or even increased slightly over time (Figure 6E–F; spike count of 10th vs. 1st

trial, 115 ± 17%, peak firing rate, 87.0 ± 11.4%). In contrast, the output of GFP(+) MCs decreased

markedly over successive stimuli (Figure 6F–H; spike count of 10th vs. 1st trial, 30.7 ± 12.3%; peak

Figure 5. Mating reduces the responsiveness of MCs to repetitive inputs. (A) MC firing to an initial current stimulus is similar for naı̈ve and mated

females. (B) Firing rate profile averaged across all MCs from naı̈ve and mated animals. (C, D) Mating has no effect initial MC output (peak firing rate:

p=0.51; change in firing rate: p=0.55; t-test; n = 10 and 15 cells from 5 and 7 mice for naı̈ve and mated groups respectively). (E) Example MC responses

to repetitive stimulation. Firing is stable over time in naı̈ve females, but drops dramatically over time after mating. (F) Average MC output across

successive stimuli for naı̈ve (blue) and mated females (red). Firing on 10th trial is 80 ± 11% (naı̈ve) vs. 36 ± 8% of 1st trial (mated); F = 10.01, Fc = 4.30,

p=0.003; ANOVA with post-hoc Tukey test. Light colors show individual neurons; dark traces show mean ± SEM. (G) Cumulative histogram showing

increased attenuation in MCs from mated animals (p=0.027; Kolmogorov-Smirnov test; n = 9 and 15 neurons from 5 and 7 mice respectively). NS, not

significant. *p<0.05; **p<0.01.

DOI: 10.7554/eLife.25421.016

The following source data is available for figure 5:

Source data 1. This spreadsheet contains the firing rate and spike count data for mitral cells used to generate the bar plots and average data shown in

Figures 5C, D and F.

DOI: 10.7554/eLife.25421.017
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Figure 6. Plasticity in MC responsiveness is specific to mating-activated neurons. (A) Both GFP(-) and GFP(+) MCs

show similar initial responses to current stimuli. (B) Mean firing rate profiles for GFP(+) and GFP(-) MCs in Fos-GFP

females after mating (mean ± SEM; n = 7 and 11 cells in 5 and 7 mice). (C, D) Initial MC output is similar between

GFP(-) and GFP(+) groups (firing rate, p=0.81; spike count, p=0.63; t-test). (E) Representative MC responses to

repetitive stimulation in mated females. (F) After mating, GFP(-) MCs maintain consistent firing, but the output of

stud-activated GFP(+) neurons is dramatically attenuated over time (mean ± SEM; n = 7 and 11 cells in 7 mice). (G)

Cumulative histograms indicate a shift towards greater suppression in the MCs activated during mating (p=0.18;

Kolmogorov-Smirnov test). (H) Mean suppression after 10 trials for GFP(-) and GFP(+) neurons (spike count on 10th

Figure 6 continued on next page
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firing, 29.4 ± 10.2%). Results were independent of criteria for selecting GFP(+) and GFP(-) popula-

tions (Figure 6—figure supplement 1). These data indicate that reduced excitability arises specifi-

cally in the MC ensemble activated by the stud during mating and subsequent sensory experience.

To ensure that MC excitability was altered by learning, rather than reflecting a pre-existing cell

population in AOB, we performed parallel experiments where control females received sensory

exposure to males without mating. This labeled a much smaller group of MCs, which responded

with higher firing rates than unlabeled neurons in the same animals (Figure 6—figure supplement

2A–C). Membrane resistance was also higher in GFP(+) MCs (data not shown), suggesting that sen-

sory stimulation alone preferentially recruits a group of high-excitability neurons similar to findings in

neocortex (Yassin et al., 2010). In contrast to results in mated females, however, both GFP(-) and

GFP(+) populations maintained consistent firing over all trials, despite their differences in initial

responsiveness (Figure 6—figure supplement 1D–F). These data further indicate that dynamic

changes in MC excitability result from imprinting, and emerge specifically in the population labeled

during mating.

We estimated the net loss of output for stud-activated MC populations by plotting cumulative

spike counts for matched groups of GFP(+) and GFP(-) neurons, which showed that total spike count

diverged rapidly between the two groups (Figure 6I). Together, these results provide the first direct

evidence of targeted, cell-specific changes in the AOB ensembles activated by conspecifics during

social experience.

MC firing could potentially be shaped directly by changes in intrinsic membrane properties per

se, or by prolonged synaptic inhibition that outlasts the stimulus. To distinguish between these pos-

sibilities, we tested MCs after blocking fast synaptic transmission with NBQX, APV, and bicuculline

(10, 50, and 10 mM respectively). MC suppression was intact even after eliminating local circuit inter-

actions, indicating that it did not depend on persistent inhibition (Figure 7—figure supplement 1).

We further probed the source of reduced MC firing by examining membrane properties over the

course of stimulus trains. Repeated stimulation led to a progressive hyperpolarization of MC mem-

brane potential, both in randomly selected MCs in mated Arc-GFP females (Figure 7A) and in GFP

(+) MCs in mated Fos-GFP mice (Figure 7B; Figure 7—source data 1). These changes were not pre-

dicted by initial MC resting potential, which was indistinguishable between naı̈ve and mated females

in Arc-GFP mice (Figure 7C; �58.0 ± 1.1 mV vs. �56.7 ± 0.7 mV respectively), and between GFP(+)

and GFP(-) populations within mated Fos-GFP females (Figure 7C; �55.0 ± 1.5 vs. �53.9 ± 1.1 mV,

p=0.56, t-test; n = 7 and 11 respectively). On average, GFP(+) MCs were hyperpolarized by

�3.3 ± 0.5 mV vs. 0.2 ± 0.6 for GFP(-) neurons (Figure 7D; p<0.05, t-test). MC hyperpolarization was

strongly correlated with loss of firing (Figure 7E). Hyperpolarization was accompanied by a slight

reduction in membrane resistance (initial vs. final Rin, 486 ± 114 MW vs. 341 ± 27 MW; p=0.26, t-test).

Together, these data further indicate that reduced MC output is due to changes in intrinsic mem-

brane properties rather than altered synaptic inhibition, imparting stud-activated neurons with a sen-

sitivity to recent firing that progressively dampens their output.

The hormonal changes that drive pregnancy block occur over several hours of sensory exposure,

during which animals interact intermittently at varying intervals. To further probe the time course of

plasticity, we probed randomly selected MCs in mated females using stimuli spaced 2 min and 3 min

apart. Each firing bout led to hyperpolarization that decayed extremely slowly, lasting until the onset

Figure 6 continued

vs. 1st trial: unlabeled, 115 ± 17%, p=0.41; labeled, 30.7 ± 12.3%; p=0.0017; t-test). (I) Cumulative action potential

output of GFP(-) and GFP(+) MCs, averaged across all recorded neurons.

DOI: 10.7554/eLife.25421.018

The following source data and figure supplements are available for figure 6:

Source data 1. This spreadsheet contains the firing rate and spike count data for mitral cells used to generate the

bar plots and average data shown in Figures 6C, D, F and H.

DOI: 10.7554/eLife.25421.019

Figure supplement 1. Correlated plasticity and GFP labeling are independent of selection criteria.

DOI: 10.7554/eLife.25421.020

Figure supplement 2. Slow attenuation is absent in GFP(+) MCs labeled by sensory exposure alone.

DOI: 10.7554/eLife.25421.021

Gao et al. eLife 2017;6:e25421. DOI: 10.7554/eLife.25421 12 of 21

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.25421.018
http://dx.doi.org/10.7554/eLife.25421.019
http://dx.doi.org/10.7554/eLife.25421.020
http://dx.doi.org/10.7554/eLife.25421.021
http://dx.doi.org/10.7554/eLife.25421


Figure 7. Loss of MC sensitivity results from progressive membrane potential hyperpolarization. (A) Representative

MC responses to repetitive stimulation, showing initial resting potential and onset of firing for each trial.

Progressive hyperpolarization was greatly enhanced in mated vs. naı̈ve mice (red and blue respectively). (B) Within

the AOB of mated females, hyperpolarization was selectively expressed in mating-activated GFP(+) MC

populations. (C) Initial resting membrane potential was similar for MCs from naı̈ve vs. mated females (blue and red

respectively; p=0.76; n = 9 and 15 cells in 5 and 7 mice), and for labeled and unlabeled MC populations in mated

animals (gray and green; p=0.56; t-test; n = 7 and 11 neurons in 5 and 7 mice). (D) Mean hyperpolarization during

repetitive stimulation for GFP(+) and GFP(-) MCs (green and gray; upper and lower 1/3 of the recorded

population; *, p<0.05; t-test). (E) Progressive loss of MC responsiveness is correlated with membrane

hyperpolarization. Green, GFP(+); dark gray, GFP(-); light gray, intermediate. (F) Membrane hyperpolarization

persists for > 2.5 min between stimuli. Traces show Vm before and after three successive spike trains delivered 3

min apart. Red dashes show step-like hyperpolarization lasting until the next stimulus. (G,H) Mean

hyperpolarization and normalized change in firing for MCs tested with stimuli 2 min and 3 min apart.

DOI: 10.7554/eLife.25421.022

The following source data and figure supplement are available for figure 7:

Source data 1. This spreadsheet contains the membrane potential data for mitral cells used to generate the bar

plots and average data shown in Figure 7C and D.

DOI: 10.7554/eLife.25421.023

Figure 7 continued on next page

Gao et al. eLife 2017;6:e25421. DOI: 10.7554/eLife.25421 13 of 21

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.25421.022
http://dx.doi.org/10.7554/eLife.25421.023
http://dx.doi.org/10.7554/eLife.25421


of the next stimulus (Figure 7G). Intervals of both 2 min and 3 min gave comparable levels of hyper-

polarization and attenuated firing after 10 stimuli (Figure 7G–H; mean DVm, �5.64 ± 0.88 and

�6.02 ± 2.05 mV for 2 and 3 min intervals respectively; normalized spike count, 0.176 ± 0.116 and

0.193 ± 0.089 for 2 and 3 min). When possible, we tested MCs again at 15 min and 35 min after the

offset of stimulation, which revealed that suppression lasted for total periods of an hour or longer

(normalized spike count, 0.149 ± 0.080 and 0.117 ± 0.072 at 15 and 35 min respectively; DVm,

�5.85 ± 1.49 and �6.21 ± 1.97 at 15 and 35 min). These results indicate that MC plasticity persists

on the timescales relevant to physiology and behavior in vivo.

Discussion
Our data provide the first direct measurements of the synaptic and cellular effects of pheromonal

learning in females after mating. We used ex vivo recordings to characterize changes in both excit-

atory and inhibitory neurons in AOB, and found broad enhancement of inhibitory circuits consistent

with previous findings. However, using targeted measurements from identified mating-activated

ensembles, we found that synaptic plasticity lacked the specificity thought to be required for recog-

nition memories. Surprisingly, we also found a striking reduction in intrinsic excitability in MCs, sug-

gesting a novel basis for storing sensory experience in AOB. Notably, this loss of responsiveness was

confined to the set of MCs activated during mating, consistent with a stud-selective recognition

memory. MC excitability also showed unusual dynamics, where output was initially unchanged, but

instead progressively decreased depending on recent activity. Slow MC dynamics may selectively fil-

ter repetitive vomeronasal inputs over extended timescales, preserving sensitivity at the onset of

behavioral encounters while reducing their longer-term impact on neuroendocrine centers that con-

trol hormonal status and pregnancy. Our data are broadly consistent with the selective MC plasticity

proposed by existing learning models, but also suggest a new and unanticipated cellular mechanism

that complements changes in synaptic strength.

Inhibitory circuits in AOB
AOB inhibitory circuits had several unique properties. First, we found that MCs could strongly sup-

press their own firing via pronounced self-inhibition, consistent with robust GABAergic circuits in

AOB (Castro et al., 2007; Hendrickson et al., 2008; Shpak et al., 2012). Self-inhibition in MOB

MCs, in contrast, had much weaker effects on firing. Self-inhibition in AOB also emerged surprisingly

slowly, building over several seconds so that it was strongest during prolonged MC firing on the

timescales of natural sensory-evoked responses (Ben-Shaul et al., 2010; Luo et al., 2003). The basis

for differences in self-inhibition in AOB and MOB are unclear, but may be linked to the prominent

role of mGluRs in AOB (Castro et al., 2007).

Our data suggest that mating acts on multiple cell types and synaptic elements in AOB inhibitory

circuits. Increased frequency of excitatory input to GCs implies upregulation of release sites in MC

dendrites, and enhanced amplitude suggests strengthening of postsynaptic contacts, consistent with

the ultrastructural enlargements seen in the postsynaptic density (Ichikawa, 2003; Matsuoka et al.,

2004). Increased frequency of mIPSCs in MCs also suggests enhanced release of GABA from GCs,

which could result either from changes in existing contacts or addition of new synapses via spine

growth or recruitment of adult-born interneurons (Mak and Weiss, 2010; Shingo et al., 2003).

Overall, however, this inhibitory plasticity appeared to have little effect on MC output driven by cur-

rent injection. Increased release of GABA may be counterbalanced by short-term dynamics during

extended firing (Dietz and Murthy, 2005), or alternatively changes in mIPSCs may reflect top-down

inputs to AOB (Fan and Luo, 2009) that would contribute to spontaneous but not recurrent

inhibition.

Memory formation has long been proposed to rely on inhibitory plasticity, selectively targeting

the stud-activated MC population (Brennan and Keverne, 1997). In contrast, we found that synaptic

Figure 7 continued

Figure supplement 1. MC hyperpolarization and attenuation of firing does not depend on persistent synaptic

inhibition.

DOI: 10.7554/eLife.25421.024
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changes were widely distributed across both MCs and GCs with no observable dependence on acti-

vation during mating. While non-specific plasticity runs counter to existing models, our data do not

exclude a role for inhibition in learning or sensory processing. GABAergic circuits may be differen-

tially recruited in vivo, where complex natural cues activate larger MC populations (Ben-Shaul et al.,

2010; Meeks et al., 2010). Inhibition strongly shapes MC firing in the intact brain

(Hendrickson et al., 2008), and descending pathways targeting AOB are likely to further shape sen-

sory responses (Fan and Luo, 2009). Overall, however, the nonspecific nature of inhibitory plasticity

suggests it may act in concert with other, more targeted changes in the AOB circuit.

Plasticity of intrinsic membrane excitability in MCs
Unexpectedly, imprinting had the most striking effects on intrinsic rather than synaptic properties,

suggesting an alternative cellular mechanism for storing sensory experience in AOB. MC suppression

was largely absent in naı̈ve females, but was strongly increased by mating in two separate datasets,

indicating that it is was generated de novo by learning rather than reflecting pre-existing AOB popu-

lations (Yassin et al., 2010). Experience-dependent changes in excitability often accompany synaptic

modifications in both mammalian and invertebrate systems (Daoudal and Debanne, 2003;

Zhang and Linden, 2003). Altered intrinsic properties support homeostatic regulation in cortical cir-

cuits, scaling cellular excitability to match long-term changes in sensory input (Desai et al., 1999;

Turrigiano, 2011). Often, learning acts to enhance excitability (Barkai and Saar, 2001; Zhang and

Linden, 2003), acting to amplify responses to trained sensory inputs (Mozzachiodi and Byrne,

2010), or to select neural populations encoding the learned cue (Yiu et al., 2014; Zhou et al.,

2009). Here, in contrast, MC excitability was strongly reduced by pheromonal learning. This sign

reversal is consistent with the fact that imprinting leads to the suppression of an otherwise default

neuroendocrine response to sensory input. Notably, whereas other paradigms lead to static effects

on excitability that are immediately apparent on testing, changes in MCs were dynamic and only

emerged after strong activation. The excitability of control and ‘imprinted’ neurons was initially indis-

tinguishable, and responses only diverged after cells had experienced substantial firing. MC hyper-

polarization accumulated after each trial and lasted for at least 30 min after the offset of stimulation,

suggesting that MCs display an unusual and highly integrative form of intrinsic membrane plasticity.

What are the potential advantages of intrinsic versus synaptic plasticity in AOB? Membrane excit-

ability offers a simple way to selectively control the output of specific MC populations, whereas

inhibitory plasticity would need to be coordinated across large sets of GCs, and further targeted to

the specific synapses onto stud-encoding MCs. Intrinsic excitability may be particularly well suited to

mediating learning in dedicated sensory pathways coupled to stereotyped behavioral responses.

Interestingly, firing was similar for labeled and unlabeled MCs after mating, and only diverged after

extended activity bouts. Thus, learning does not cause simple, static changes in MC excitability per

se, but instead leads to metaplastic effects that impart sensitivity to recent firing levels. In metaplas-

ticity of synaptic strength, experience shifts thresholds for potentiation and depression via changes

in NMDA subunit composition (Abraham, 2008; Lee et al., 2010). Metaplasticity in the intrinsic

excitability of MCs may rely on similar changes in composition of membrane conductances. Pro-

longed hyperpolarization and lowered membrane resistance are consistent with changes in potas-

sium channels such as HCN or Ca2+-dependent K+ currents, which are present in main olfactory bulb

and linked to learning in other systems (Lin et al., 2008; Nolan et al., 2004, 2003; Stackman et al.,

2002; Wang et al., 2007). MC firing is also modulated by intrinsic conductances such as CAN cur-

rents, which boost synaptic responses (Shpak et al., 2014, 2012) and likely contributed to acceler-

ated firing rates seen over the first few seconds of stimulation in our study. Interestingly, this current

opposes the MC hyperpolarization we describe here, which appeared to dominate after more pro-

longed firing bouts and was most readily apparent only after mating. AOB MCs thus appear to

express multiple activity-dependent conductances that dynamically modulate their firing depending

on the strength, duration, and biological context of activity. The specific conductances responsible

for slow MC attenuation remain to be established.

Dynamic MC output and sensory representations
Dynamic, activity-dependent changes in excitability were a unique feature of AOB MCs. How may

slowly adapting sensitivity contribute to sensory processing? One potential role is to high-pass filter
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vomeronasal input, preserving responsiveness at the onset of social interactions for appropriate

selection of aggressive, reproductive, or parental behaviors (Burns-Cusato et al., 2004;

Clancy et al., 1984; Stowers et al., 2002; Tachikawa et al., 2013), while selectively attenuating the

long-lasting, repetitive AOB activity required for the neuroendocrine changes that block pregnancy

(Li et al., 1994; Rosser et al., 1989). Similarly, slow activity dynamics may help reduce interference

between memories of different individuals. Different males have similar chemical signatures

(Harvey et al., 1989), suggesting that they may also have overlapping neural representations in

AOB. Eliminating the responses of stud-encoding MCs could therefore also disrupt representations

of other, non-imprinted animals. Delayed changes in MC output may help minimize the impact of

plasticity on overlapping sensory codes.

Fos-GFP labeling was transient, limiting our measurements to a period of several hours following

mating. The effects of mating on pregnancy block, however, can last for many weeks

(Brennan et al., 1990). It will be important to determine whether effects on MC excitability are

maintained for similar time periods. Other, more permanent labeling strategies may allow plasticity

to be tested at later time points (Guenthner et al., 2013; Sakurai et al., 2016). Alternatively, sen-

sory memories could be stored initially in AOB and then transferred to other areas, as seen in other

memory systems (Preston and Eichenbaum, 2013; Ross and Eichenbaum, 2006).

Mating is one of several biological contexts where animals show flexibility in vomeronasal-guided

behaviors. Interestingly, many of these involve the loss of an otherwise default response, similar to

the effects of mating. Males shift from attack to parental behaviors towards pups (Tachikawa et al.,

2013; Wu et al., 2014), and regulate aggression towards other males to form dominance hierarchies

(Wang et al., 2014). Behavioral responses to fear-inducing cues such as predator odors can also

habituate with repeated presentation (Takahashi et al., 2005). It is currently unclear whether the

behavioral plasticity seen in other paradigms relies on similar cellular mechanisms in AOB, and it will

be important for future work to test this possibility.

Overall, our data reveal a novel form of cellular plasticity that emerges after mating in females,

where slowly emerging, activity-dependent changes in intrinsic excitability dramatically attenuate

the output of the MC ensemble activated by the stud male. It will be important for future work to

test how this plasticity shapes sensory representations and neuroendocrine responses in behaving

animals during social encounters. Changes in MC excitability could also contribute to flexibility in

other vomeronasal-mediated behaviors, which often involve suppression of otherwise default sen-

sory responses (Tachikawa et al., 2013). While the AOB is a critical node in the vomeronasal path-

way, MC plasticity likely acts in parallel with broader changes across the extended network of brain

regions that couple chemosensory input to behavior (Dulac et al., 2014; Wu et al., 2014).

Materials and methods

Mice
All experiments were performed in sexually mature adult female mice 8–14 weeks of age. Reporter

lines were obtained from Jackson Laboratory (Arc-GFP, RRID:IMSR_JAX:007662; Fos-GFP, RRID:

IMSR_JAX:018306) and bred in a C57BI/6J background. Experimental Arc-GFP animals were hetero-

zygous, maintaining a functional Arc allele. Animals were group housed in the Boston University ani-

mal care facility on a 12 hr light/dark cycle with ad lib access to food and water. Mice were

anesthetized �5 days prior to experiment and received bilateral ovariectomies followed by implanta-

tion of estradiol capsules (Bakker et al., 2003). On the experimental day, estrus was induced with

progesterone injection (16 mg/g), confirmed by vaginal smears and histological examination (Cali-

gioni, 2009). At estrus onset, 3–4 hr after the beginning of the light cycle, females were paired with

a sexually experienced male in their home cage for an additional 4 hr for mating and subsequent

sensory exposure required for imprinting. Males typically attempted copulation within 20–30 min.

Cases where males did not mount females were used as controls for sensory experience without

mating. Sedated males were also used for sensory-exposure controls; activity-dependent labeling in

the corresponding females was indistinguishable and these data were grouped together. Females in

both mated and sensory-exposed groups were ovariectomized and progesterone-primed, while

naı̈ve females were unmanipulated. While mating success could not be evaluated in electrophysiol-

ogy experiments, in a parallel group this protocol resulted in pregnancy in 9 of 11 gonadally intact
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females. Reproductive encounters were video recorded and scored to quantify mating and behav-

ioral interactions. All procedures were approved by the Boston University Institutional Animal Care

and Use Committee and followed guidelines set by the US National Institutes of Health.

Activity-dependent labeling
Activity-dependent labeling was visualized in each slice prior to electrophysiological recordings

using a two-photon microscope (Prairie Ultima) with 920 nm excitation and a 20X NA 0.95 objective

(Olympus), using consistent acquisition settings for laser power and detector gain across sessions.

Immediately prior to establishing recordings, we acquired additional image stacks of GFP labeling

for the field of view at each recording location (250 mm X 250 mm) using a 40X NA 0.8 objective

(Olympus). Intensity was quantified for all detectable neurons using a circular region of interest cen-

tered on the soma. GFP intensity was continuously distributed, presumably reflecting graded levels

of prior activity. Cells were classified as unlabeled or labeled using a threshold of �2 or�4 times

background neuropil fluorescence respectively. For electrophysiological analysis, we performed simi-

lar analyses comparing the brightest third and dimmest 50%, 33%, and 25% of our recorded sample.

Results were robust to classification threshold and comparison groups.

Electrophysiology
Sagittal brain slices of AOB (300 mm thick) were prepared from female mice using a vibratome

(VT1200S, Leica, Buffalo Grove IL). To preserve tissue health in adult animals, mice were deeply

anesthetized with ketamine/xylazine and perfused transcardially with ice-cold modified artificial cere-

brospinal fluid (ACSF) containing, in mM: 124 NaCl, 2.5 KCl, 1.25 NaH2PO4, 25 NaHCO3, 75

sucrose, 10 glucose, 1.3 ascorbic acid, 0.5 CaCl2 and 7 MgCl2. Slices were maintained using ACSF

containing, in mM: 124 NaCl, 3 KCl, 1.25 NaH2PO4, 26 NaHCO3, 20 sucrose, 2 CaCl2 and 1.5

MgCl2, continuously oxygenated with 95/5% O2/CO2. Slices were visualized with a two-photon

microscope (Ultima, Prairie Technologies, Middleton WI) using a 40x water immersion objective and

Dodt contrast imaging. Whole cell electrodes were pulled to tip resistances of 3–8 MW and con-

tained the following internal solutions (in mM): current clamp, 135 K-gluconate, 2 MgCl2, 10 HEPES,

0.4 EGTA, 2 MgATP, 0.5 Na3GTP, 10 phosphocreatine disodium; voltage clamp, 115 CsCl, 25 TEA-

Cl, 5 QX314-Cl, 0.2 EGTA, 4 MgATP, 0.3 Na3GTP and 10 phosphocreatine disodium. Alexa 594 was

added to the internal solution to confirm cell identity in targeted recordings. Membrane voltage was

not corrected for liquid junction potential. Electrophysiological data was collected at 29.5˚C with a

Multiclamp 700B amplifier (Molecular Devices, Sunnyvale, CA) and digitized at 10 kHz (National

Instruments PCI-6321) using custom Matlab routines (Mathworks, Natick, MA). Action potential

detection and analysis was performed using custom Matlab routines detecting zero-crossing mem-

brane potentials. Changes in firing with repeated stimulation were quantified as a suppression index,

calculated as the ratio of firing on the 10th vs. first trial. Synaptic currents and EPSPs were detected

and analyzed in Igor Pro (WaveMetrics, Lake Oswego, Oregon) using Taro Tools (https://sites.goo-

gle.com/site/tarotoolsmember/). Thresholds were chosen to maximize detection of synaptic events

while excluding false positives due to recording noise. Thresholds were set at 10 pA for mIPSCs in

MCs, and 0.25 mV for EPSPs in GCs. In both cases we estimate we detected at least 95–98% of

events while limiting false positives to <1%, determined by visual inspection. GC results were consis-

tent across a wide range of detection criteria. All chemicals were obtained from Sigma/Aldrich

(NBQX), Tocris (BMI), and Alomone Labs (TTX). Receptor antagonists (APV, NBQX and Gabazine)

were applied by bath perfusion. All results reported in the text and figures represent mean ± S.E.M.

Statistical analysis
Statistical significance was calculated using t-test or ANOVA as appropriate, noted in results and fig-

ure legends. Distributions of miniature and spontaneous synaptic events were analyzed with the Kol-

mogorov-Smirnov test. Animals were randomly assigned to naı̈ve, sensory exposure, or mating

groups after recovery from surgery. Data collection and analysis were not blind to experimental

conditions.
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Kendrick KM, Lévy F, Keverne EB. 1992. Changes in the sensory processing of olfactory signals induced by birth
in sheep. Science 256:833–836. doi: 10.1126/science.1589766, PMID: 1589766

Gao et al. eLife 2017;6:e25421. DOI: 10.7554/eLife.25421 19 of 21

Research article Neuroscience

http://dx.doi.org/10.1016/0306-4522(92)90095-J
http://www.ncbi.nlm.nih.gov/pubmed/1279452
http://dx.doi.org/10.1016/0306-4522(95)00309-7
http://dx.doi.org/10.1016/0306-4522(95)00309-7
http://www.ncbi.nlm.nih.gov/pubmed/8848096
http://dx.doi.org/10.1016/S0301-0082(96)00069-X
http://www.ncbi.nlm.nih.gov/pubmed/9106902
http://dx.doi.org/10.1016/j.yhbeh.2004.01.010
http://www.ncbi.nlm.nih.gov/pubmed/15325224
http://dx.doi.org/10.1093/chemse/bjh157
http://www.ncbi.nlm.nih.gov/pubmed/15738084
http://dx.doi.org/10.1126/science.131.3412.1526
http://www.ncbi.nlm.nih.gov/pubmed/13805126
http://dx.doi.org/10.1016/j.physbeh.2004.08.015
http://www.ncbi.nlm.nih.gov/pubmed/15488541
http://dx.doi.org/10.1002/0471142301.nsa04is48
http://www.ncbi.nlm.nih.gov/pubmed/19575469
http://dx.doi.org/10.1523/JNEUROSCI.0613-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/17522311
http://dx.doi.org/10.1038/nature05997
http://dx.doi.org/10.1038/nature05997
http://www.ncbi.nlm.nih.gov/pubmed/18064011
http://www.ncbi.nlm.nih.gov/pubmed/6541245
http://dx.doi.org/10.1101/lm.64103
http://www.ncbi.nlm.nih.gov/pubmed/14657257
http://dx.doi.org/10.1038/9165
http://www.ncbi.nlm.nih.gov/pubmed/10448215
http://dx.doi.org/10.1113/jphysiol.2005.095844
http://www.ncbi.nlm.nih.gov/pubmed/16166156
http://dx.doi.org/10.1038/nrn1140
http://www.ncbi.nlm.nih.gov/pubmed/12838330
http://dx.doi.org/10.1126/science.1253291
http://www.ncbi.nlm.nih.gov/pubmed/25124430
http://dx.doi.org/10.1016/j.neuroscience.2009.03.065
http://www.ncbi.nlm.nih.gov/pubmed/19341782
http://dx.doi.org/10.1016/j.neuron.2013.03.025
http://dx.doi.org/10.1016/j.neuron.2013.03.025
http://www.ncbi.nlm.nih.gov/pubmed/23764283
http://dx.doi.org/10.1111/j.1460-9568.2001.01382.x
http://dx.doi.org/10.1111/j.1460-9568.2001.01382.x
http://www.ncbi.nlm.nih.gov/pubmed/11168544
http://dx.doi.org/10.1007/BF01207438
http://www.ncbi.nlm.nih.gov/pubmed/24272296
http://dx.doi.org/10.1523/JNEUROSCI.2715-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/19020044
http://dx.doi.org/10.1016/j.yhbeh.2007.03.030
http://dx.doi.org/10.1016/j.yhbeh.2007.03.030
http://www.ncbi.nlm.nih.gov/pubmed/17499249
http://dx.doi.org/10.1016/j.bbr.2008.12.020
http://www.ncbi.nlm.nih.gov/pubmed/19146884
http://dx.doi.org/10.2108/zsj.20.687
http://www.ncbi.nlm.nih.gov/pubmed/12832819
http://dx.doi.org/10.1016/S0896-6273(00)81013-2
http://www.ncbi.nlm.nih.gov/pubmed/9581766
http://dx.doi.org/10.1016/0306-4522(88)90053-X
http://www.ncbi.nlm.nih.gov/pubmed/2841623
http://www.ncbi.nlm.nih.gov/pubmed/2841623
http://dx.doi.org/10.1126/science.8023145
http://www.ncbi.nlm.nih.gov/pubmed/8023145
http://dx.doi.org/10.1126/science.1589766
http://www.ncbi.nlm.nih.gov/pubmed/1589766
http://dx.doi.org/10.7554/eLife.25421


Keverne EB, Brennan PA. 1996. Olfactory recognition memory. Journal of Physiology-Paris 90:399–401. doi: 10.
1016/S0928-4257(97)87929-6, PMID: 9089523

Kimchi T, Xu J, Dulac C. 2007. A functional circuit underlying male sexual behaviour in the female mouse brain.
Nature 448:1009–1014. doi: 10.1038/nature06089, PMID: 17676034

Lee MC, Yasuda R, Ehlers MD. 2010. Metaplasticity at single glutamatergic synapses. Neuron 66:859–870.
doi: 10.1016/j.neuron.2010.05.015, PMID: 20620872
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