65 research outputs found

    Planning hierarchical urban transit systems for reductions in greenhouse gas emissions

    Full text link
    Public transit systems with high occupancy can reduce greenhouse gas (GHG) emissions relative to low-occupancy transportation modes, but current transit systems have not been designed to reduce environmental impacts. This motivates the study of the benefits of design and operational approaches for reducing the environmental impacts of transit systems. For example, transit agencies may replace level-of-service (LOS) by vehicle miles traveled (VMT) as a criterion in evaluating design and operational changes. In previous work, we explored the unintended consequences of lowering transit LOS on emissions in a single-technology transit system. Herein, we extend the analysis to account for a more realistic case: a transit system with a hierarchical structure (trunk and feeder lines) providing service to a city where demand is elastic. By considering the interactions between the trunk and the feeder systems, we provide a quantitative basis for designing and operating integrated urban transit systems that can reduce GHG emissions and societal costs. We find that highly elastic transit demand may cancel emission reduction potentials resulting from lowering LOS, due to demand shifts to lower occupancy vehicles. However, for mass transit modes, these potentials are still significant. Transit networks with buses, bus rapid transit or light rail as trunk modes should be designed and operated near the cost-optimal point when the demand is highly elastic, while this is not required for metro. We find that the potential for unintended consequences increases with the size of the city. Our results are robust to uncertainties in the costs and emissions parameters

    Analysis of long-term observations of NOx and CO in megacities and application to constraining emissions inventories

    Get PDF
    Long-term atmospheric NOx/CO enhancement ratios in megacities provide evaluations of emission inventories. A fuel-based emission inventory approach that diverges from conventional bottom-up inventory methods explains 1970–2015 trends in NOx/CO enhancement ratios in Los Angeles. Combining this comparison with similar measurements in other U.S. cities demonstrates that motor vehicle emissions controls were largely responsible for U.S. urban NOx/CO trends in the past half century. Differing NOx/CO enhancement ratio trends in U.S. and European cities over the past 25 years highlights alternative strategies for mitigating transportation emissions, reflecting Europe's increased use of light-duty diesel vehicles and correspondingly slower decreases in NOx emissions compared to the U.S. A global inventory widely used by global chemistry models fails to capture these long-term trends and regional differences in U.S. and Europe megacity NOx/CO enhancement ratios, possibly contributing to these models' inability to accurately reproduce observed long-term changes in tropospheric ozone

    REGIONAL IMPACTS OF AIR QUALITY REGULATION: APPLYING AN ECONOMIC MODEL

    No full text
    The South Coast Air Quality Management District promulgated an Air Quality Management Plan (AQMP) in 1989 so as to attain federal air quality standards for the South Coast Air Basin by the year 2007. Because the AQMP affects all walks of life, its economic impact has become the focal point of debates. This paper examines not only the traditional approach to evaluating the direct cost of a public policy change on the regulated community, but also a systematic approach to assessing direct and indirect impacts of such policy change. This latter approach will enhance the decisionmaking process by allowing one to compare the impacts of various projects in the same context. Copyright 1991 Western Economic Association International.
    corecore