46 research outputs found

    Cryomicroscopy reveals the structural basis for a flexible hinge motion in the immunoglobulin M pentamer

    Get PDF
    Immunoglobulin M (IgM) is the most ancient of the five isotypes of immunoglobulin (Ig) molecules and serves as the first line of defence against pathogens. Here, we use cryo-EM to image the structure of the human full-length IgM pentamer, revealing antigen binding domains flexibly attached to the asymmetric and rigid core formed by the Cμ4 and Cμ3 constant regions and the J-chain. A hinge is located at the Cμ3/Cμ2 domain interface, allowing Fabs and Cμ2 to pivot as a unit both in-plane and out-of-plane. This motion is different from that observed in IgG and IgA, where the two Fab arms are able to swing independently. A biased orientation of one pair of Fab arms results from asymmetry in the constant domain (Cμ3) at the IgM subunit interacting most extensively with the J-chain. This may influence the multi-valent binding to surface-associated antigens and complement pathway activation. By comparison, the structure of the Fc fragment in the IgM monomer is similar to that of the pentamer, but is more dynamic in the Cμ4 domain

    Reliability of the biceps brachii M-wave

    Get PDF
    BACKGROUND: The peak-to-peak (P-P) amplitude of the maximum M-wave and the area of the negative phase of the curve are important measures that serve as methodological controls in H-reflex studies, motor unit number estimation (MUNE) procedures, and normalization factors for voluntary electromyographic (EMG) activity. These methodologies assume, with little evidence, that M-wave variability is minimal. This study therefore examined the intraclass reliability of these measures for the biceps brachii. METHODS: Twenty-two healthy adults (4 males and 18 females) participated in 5 separate days of electrical stimulation of the musculocutaneous nerve supplying the biceps brachii muscle. A total of 10 stimulations were recorded on each of the 5 test sessions: a total of fifty trials were used for analysis. A two-factor repeated measures analysis of variance (ANOVA) evaluated the stability of the group means across test sessions. The consistency of scores within individuals was determined by calculating the intraclass correlation coefficient (ICC). The variance ratio (VR) was then used to assess the reproducibility of the shape of the maximum M-wave within individual subjects. RESULTS: The P-P amplitude means ranged from 12.62 ± 4.33 mV to 13.45 ± 4.07 mV across test sessions. The group means were highly stable. ICC analysis also revealed that the scores were very consistent (ICC = 0.98). The group means for the area of the negative phase of the maximum M-wave were also stable (117 to 126 mV·ms). The ICC analysis also indicated a high degree of consistency (ICC = 0.96). The VR for the sample was 0.244 ± 0.169, which suggests that the biceps brachii maximum M-wave shape was in general very reproducible for each subject. CONCLUSION: The results support the use of P-P amplitude of the maximum M-wave as a methodological control in H-reflex studies, and as a normalization factor for voluntary EMG. The area of the negative phase of the maximum M-wave is both stable and consistent, and the shape of the entire waveform is highly reproducible and may be used for MUNE procedures

    High level expression of soluble glycoproteins in the allantoic fluid of embryonated chicken eggs using a Sendai virus minigenome system

    Get PDF
    BACKGROUND: Embryonated chicken eggs have been used since the mid-20th century to grow a wide range of animal viruses to high titers. However, eggs have found so far only limited use in the production of recombinant proteins. We now describe a system, based on a Sendai virus minigenome, to produce large amounts of heterologous viral glycoproteins in the allantoic cavity of embryonated eggs. RESULTS: Soluble forms of human respiratory syncytial virus (HRSV) and human metapneumovirus (HMPV) fusion (F) proteins, devoid of their transmembrane and cytoplasmic domains, were produced in allantoic fluids using the Sendai minigenome system. The first step was rescuing in cell cultures Sendai virus minigenomes encoding the proteins of interest, with the help of wild type Sendai virus. The second step was propagating such recombinant defective viruses, together with the helper virus, in the allantoic cavity of chicken embryonated eggs, and passage to optimize protein production. When compared with the production of the same proteins in the culture supernatant of cells infected with vaccinia recombinants, the yield in the allantoic fluid was 5–10 fold higher. Mutant forms of these soluble proteins were easily constructed by site-directed mutagenesis and expressed in eggs using the same approach. CONCLUSION: The simplicity and economy of the Sendai minigenome system, together with the high yield achieved in the allantoic fluid of eggs, makes it an attractive method to express soluble glycoproteins aimed for structural studies

    Three-dimensional architecture of the human BRCA1-A histone deubiquitinase core complex

    Get PDF
    BRCA1 is a tumor suppressor found to be mutated in hereditary breast and ovarian cancer and plays key roles in the maintenance of genomic stability by homologous recombination repair. It is recruited to damaged chromatin as a component of the BRCA1-A deubiquitinase, which cleaves K63-linked ubiquitin chains attached to histone H2A and H2AX. BRCA1-A contributes to checkpoint regulation, repair pathway choice, and HR repair efficiency through molecular mechanisms that remain largely obscure. The structure of an active core complex comprising two Abraxas/BRCC36/BRCC45/MERIT40 tetramers determined by negative-stain electron microscopy (EM) reveals a distorted V-shape architecture in which a dimer of Abraxas/BRCC36 heterodimers sits at the base, with BRCC45/Merit40 pairs occupying each arm. The location and ubiquitin-binding activity of BRCC45 suggest that it may provide accessory interactions with nucleosome-linked ubiquitin chains that contribute to their efficient processing. Our data also suggest how ataxia telangiectasia mutated (ATM)-dependent BRCA1 dimerization may stabilize self-association of the entire BRCA1-A complex

    Structures of complexes formed by H5 influenza hemagglutinin with a potent broadly neutralizing human monoclonal antibody.

    Get PDF
    H5N1 avian influenza viruses remain a threat to public health mainly because they can cause severe infections in humans. These viruses are widespread in birds, and they vary in antigenicity forming three major clades and numerous antigenic variants. The most important features of the human monoclonal antibody FLD194 studied here are its broad specificity for all major clades of H5 influenza HAs, its high affinity, and its ability to block virus infection, in vitro and in vivo. As a consequence, this antibody may be suitable for anti-H5 therapy and as a component of stockpiles, together with other antiviral agents, for health authorities to use if an appropriate vaccine was not available. Our mutation and structural analyses indicate that the antibody recognizes a relatively conserved site near the membrane distal tip of HA, near to, but distinct from, the receptor-binding site. Our analyses also suggest that the mechanism of infectivity neutralization involves prevention of receptor recognition as a result of steric hindrance by the Fc part of the antibody. Structural analyses by EM indicate that three Fab fragments are bound to each HA trimer. The structure revealed by X-ray crystallography is of an HA monomer bound by one Fab. The monomer has some similarities to HA in the fusion pH conformation, and the monomer's formation, which results from the presence of isopropanol in the crystallization solvent, contributes to considerations of the process of change in conformation required for membrane fusion

    Influenza hemagglutinin membrane anchor

    Get PDF
    Viruses with membranes fuse them with cellular membranes, to transfer their genomes into cells at the beginning of infection. For Influenza virus, the membrane glycoprotein involved in fusion is the hemagglutinin (HA), the 3D structure of which is known from X-ray crystallographic studies. The soluble ectodomain fragments used in these studies lacked the “membrane anchor” portion of the molecule. Since this region has a role in membrane fusion, we have determined its structure by analyzing the intact, full-length molecule in a detergent micelle, using cryo-EM. We have also compared the structures of full-length HA−detergent micelles with full-length HA−Fab complex detergent micelles, to describe an infectivity-neutralizing monoclonal Fab that binds near the ectodomain membrane anchor junction. We determine a high- resolution HA structure which compares favorably in detail with the structure of the ectodomain seen by X-ray crystallography; we detect, clearly, all five carbohydrate side chains of HA; and we find that the ectodomain is joined to the membrane anchor by flexible, eight-residue-long, linkers. The linkers extend into the detergent micelle to join a central triple-helical structure that is a major component of the membrane anchor

    La multiplication de matériel de plantation de qualité pour améliorer l'état sanitaire et la productivité des cultures : pratiques clefs pour les bananiers et les bananiers plantain. Guide illustré

    Get PDF
    Available in English, French, Spanish and Arabic, on line and on CD-ROM, this illustrated guide summarizes the key practices for producing clean planting material of banana with a high yield potential for smallholders, depending on the pests and diseases which are present. The guide is also designed to contribute to better planning of the propagation of planting material for rural development and disaster relief projects. (Résumé d'auteur

    Transcriptome dynamics and molecular cross-talk between bovine oocyte and its companion cumulus cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The bi-directional communication between the oocyte and its companion cumulus cells (CCs) is crucial for development and functions of both cell types. Transcripts that are exclusively expressed either in oocytes or CCs and molecular mechanisms affected due to removal of the communication axis between the two cell types is not investigated at a larger scale. The main objectives of this study were: 1. To identify transcripts exclusively expressed either in oocyte or CCs and 2. To identify those which are differentially expressed when the oocyte is cultured with or without its companion CCs and vice versa.</p> <p>Results</p> <p>We analyzed transcriptome profile of different oocyte and CC samples using Affymetrix GeneChip Bovine Genome array containing 23000 transcripts. Out of 13162 genes detected in germinal vesicle (GV) oocytes and their companion CCs, 1516 and 2727 are exclusively expressed in oocytes and CCs, respectively, while 8919 are expressed in both. Similarly, of 13602 genes detected in metaphase II (MII) oocytes and CCs, 1423 and 3100 are exclusively expressed in oocytes and CCs, respectively, while 9079 are expressed in both. A total of 265 transcripts are differentially expressed between oocytes cultured with (OO + CCs) and without (OO - CCs) CCs, of which 217 and 48 are over expressed in the former and the later groups, respectively. Similarly, 566 transcripts are differentially expressed when CCs mature with (CCs + OO) or without (CCs - OO) their enclosed oocytes. Of these, 320 and 246 are over expressed in CCs + OO and CCs - OO, respectively.</p> <p>While oocyte specific transcripts include those involved in transcription (<it>IRF6, POU5F1, MYF5, MED18</it>), translation (<it>EIF2AK1, EIF4ENIF1</it>) and CCs specific ones include those involved in carbohydrate metabolism (<it>HYAL1, PFKL, PYGL, MPI</it>), protein metabolic processes (<it>IHH, APOA1, PLOD1</it>), steroid biosynthetic process (<it>APOA1, CYP11A1, HSD3B1, HSD3B7</it>). Similarly, while transcripts over expressed in OO + CCs are involved in carbohydrate metabolism (<it>ACO1, 2</it>), molecular transport (<it>GAPDH, GFPT1</it>) and nucleic acid metabolism (<it>CBS, NOS2</it>), those over expressed in CCs + OO are involved in cellular growth and proliferation (<it>FOS, GADD45A</it>), cell cycle (<it>HAS2, VEGFA</it>), cellular development (<it>AMD1, AURKA, DPP4</it>) and gene expression (<it>FOSB, TGFB2</it>).</p> <p>Conclusion</p> <p>In conclusion, this study has generated large scale gene expression data from different oocyte and CCs samples that would provide insights into gene functions and interactions within and across different pathways that are involved in the maturation of bovine oocytes. Moreover, the presence or absence of oocyte and CC factors during bovine oocyte maturation can have a profound effect on transcript abundance of each cell types, thereby showing the prevailing molecular cross-talk between oocytes and their corresponding CCs.</p

    Erratum to: Methods for evaluating medical tests and biomarkers

    Get PDF
    [This corrects the article DOI: 10.1186/s41512-016-0001-y.]

    Evidence synthesis to inform model-based cost-effectiveness evaluations of diagnostic tests: a methodological systematic review of health technology assessments

    Get PDF
    Background: Evaluations of diagnostic tests are challenging because of the indirect nature of their impact on patient outcomes. Model-based health economic evaluations of tests allow different types of evidence from various sources to be incorporated and enable cost-effectiveness estimates to be made beyond the duration of available study data. To parameterize a health-economic model fully, all the ways a test impacts on patient health must be quantified, including but not limited to diagnostic test accuracy. Methods: We assessed all UK NIHR HTA reports published May 2009-July 2015. Reports were included if they evaluated a diagnostic test, included a model-based health economic evaluation and included a systematic review and meta-analysis of test accuracy. From each eligible report we extracted information on the following topics: 1) what evidence aside from test accuracy was searched for and synthesised, 2) which methods were used to synthesise test accuracy evidence and how did the results inform the economic model, 3) how/whether threshold effects were explored, 4) how the potential dependency between multiple tests in a pathway was accounted for, and 5) for evaluations of tests targeted at the primary care setting, how evidence from differing healthcare settings was incorporated. Results: The bivariate or HSROC model was implemented in 20/22 reports that met all inclusion criteria. Test accuracy data for health economic modelling was obtained from meta-analyses completely in four reports, partially in fourteen reports and not at all in four reports. Only 2/7 reports that used a quantitative test gave clear threshold recommendations. All 22 reports explored the effect of uncertainty in accuracy parameters but most of those that used multiple tests did not allow for dependence between test results. 7/22 tests were potentially suitable for primary care but the majority found limited evidence on test accuracy in primary care settings. Conclusions: The uptake of appropriate meta-analysis methods for synthesising evidence on diagnostic test accuracy in UK NIHR HTAs has improved in recent years. Future research should focus on other evidence requirements for cost-effectiveness assessment, threshold effects for quantitative tests and the impact of multiple diagnostic tests
    corecore