156 research outputs found

    Optical Linear Polarization of Late M- and L-Type Dwarfs

    Full text link
    (Abridged). We report on the linear polarimetric observations in the Johnson I filter of 44 M6-L7.5 ultracool dwarfs (2800-1400 K). Eleven (10 L and 1 M) dwarfs appear to have significant linear polarization (P = 0.2-2.5%). We have compared the M- and L-dwarf populations finding evidence for a larger frequency of high I-band polarization in the coolest objects, supporting the presence of significant amounts of dust in L-dwarfs. The probable polarizing mechanism is related to the presence of heterogeneous dust clouds nonuniformly distributed across the visible photospheres and the asymmetric shape of the objects. In some young ultracool dwarfs, surrounding dusty disks may also yield polarization. For polarimetric detections, a trend for slightly larger polarization from L0 to L6.5 may be present in our data, suggesting changes in the distribution of the grain properties, vertical height of the clouds, metallicity, age, and rotation speed. One of our targets is the peculiar brown dwarf (BD) 2MASS J2244+20 (L6.5), which shows the largest I-band polarization degree. Its origin may lie in a surrounding dusty disk or rather large photospheric dust grains. The M7 young BD CFHT-BD-Tau 4 and the L3.5 field dwarf 2MASS J0036+18 were also observed in the Johnson R filter. Our data support the presence of a circum(sub)stellar disk around the young accreting BD. Our data also support a grain growth in the submicron regime in the visible photosphere of J0036+18 (1900 K). The polarimetric data do not obviously correlate with activity or projected rotational velocity. Three polarized early- to mid-L dwarfs display I-band light curves with amplitudes below 10 mmag.Comment: Accepted for publication in ApJ (March 2005), 35 pages, 5 figure

    A Methane Isolated Planetary Mass Object in Orion

    Full text link
    We report on the discovery of a free-floating methane dwarf toward the direction of the young star cluster sigma Orionis. Based on the object's far-red optical and near-infrared photometry and spectroscopy, we conclude that it is a possible member of this association. We have named it as S Ori J053810.1-023626 (S Ori 70 is the abridged name). If it is a true member of sigma Orionis, the comparison of the photometric and spectroscopic properties of S Ori 70 with state-of-the-art evolutionary models yields a mass of 3 (+5/-1) Jupiter mass for ages between 1 Myr and 8 Myr. The presence of such a low-mass object in our small search area (55.4 sq. arcmin) would indicate a rising substellar initial mass function in the sigma Orionis cluster even for planetary masses.Comment: Accepted for publication in the ApJ. Twelve pages, figures and tables include

    The CARMENES search for exoplanets around M dwarfs - Photospheric parameters of target stars from high-resolution spectroscopy

    Full text link
    The new CARMENES instrument comprises two high-resolution and high-stability spectrographs that are used to search for habitable planets around M dwarfs in the visible and near-infrared regime via the Doppler technique. Characterising our target sample is important for constraining the physical properties of any planetary systems that are detected. The aim of this paper is to determine the fundamental stellar parameters of the CARMENES M-dwarf target sample from high-resolution spectra observed with CARMENES. We also include several M-dwarf spectra observed with other high-resolution spectrographs, that is CAFE, FEROS, and HRS, for completeness. We used a {chi}^2 method to derive the stellar parameters effective temperature T_eff, surface gravity log g, and metallicity [Fe/H] of the target stars by fitting the most recent version of the PHOENIX-ACES models to high-resolution spectroscopic data. These stellar atmosphere models incorporate a new equation of state to describe spectral features of low-temperature stellar atmospheres. Since T_eff, log g, and [Fe/H] show degeneracies, the surface gravity is determined independently using stellar evolutionary models. We derive the stellar parameters for a total of 300 stars. The fits achieve very good agreement between the PHOENIX models and observed spectra. We estimate that our method provides parameters with uncertainties of {sigma} T_eff = 51 K, {sigma} log g = 0.07, and {sigma} [Fe/H] = 0.16, and show that atmosphere models for low-mass stars have significantly improved in the last years. Our work also provides an independent test of the new PHOENIX-ACES models, and a comparison for other methods using low-resolution spectra. In particular, our effective temperatures agree well with literature values, while metallicities determined with our method exhibit a larger spread when compared to literature results

    A search for substellar members in the Praesepe and sigma Orionis clusters

    Full text link
    (Abridged). We have conducted deep photometric searches for substellar members of the Praesepe (0.5-1 Gyr) and sigma Orionis (3 Myr) star clusters using the Sloan i' and z' filters, the 3.5-m and the 5-m Hale telescopes on the Calar Alto and Palomar Observatories, respectively. The total area surveyed was 1177 arcmin^2 (Praesepe) and 1122 arcmin^2 (sigma Orionis) down to 5-sigma detection limits of i'= 24.5 and z'= 24 mag, corresponding to masses of 50-55 M_Jup (Praesepe) and 6 M_Jup (sigma Orionis). Besides recovering previously known cluster members reported in the literature, we have identified new photometric candidates in both clusters whose masses expand the full range covered by our study. In sigma Orionis, follow-up NIR photometry has allowed us to confirm the likely cluster membership of three newly discovered planetary-mass objects. The substellar mass function of sigma Orionis, which is complete from the star-brown dwarf borderline down to 7 M_Jup, keeps rising smoothly with a slope of alpha = 0.6^{+0.5}_{-0.1}. Very interestingly, one of the faintest Praesepe candidates for which we have also obtained follow-up JHK photometry nicely fits the expected optical and infrared photometric sequence of the cluster. From its colors, we have estimated its spectral type in the L4-L6 range. If confirmed as a true Praesepe member, it would become the first L-type brown dwarf (50-60 M_Jup) identified in an intermediate-age star cluster. Our derivation of the Praesepe mass function depends strongly on the cluster age. For the youngest possible ages (500-700 Myr), our results suggest that there is a deficit of Praesepe brown dwarfs in the central regions of the cluster, while the similarity between the Praesepe and sigma Orionis mass functions increases qualitatively for models older than 800 Myr.Comment: Accepted for publication in A&A. Figures 1, 7, and 9-12 are available in jpeg forma

    CARMENES input catalogue of M dwarfs IV. New rotation periods from photometric time series

    Full text link
    Aims. The main goal of this work is to measure rotation periods of the M-type dwarf stars being observed by the CARMENES exoplanet survey to help distinguish radial-velocity signals produced by magnetic activity from those produced by exoplanets. Rotation periods are also fundamental for a detailed study of the relation between activity and rotation in late-type stars. Methods. We look for significant periodic signals in 622 photometric time series of 337 bright, nearby M dwarfs obtained by long-time baseline, automated surveys (MEarth, ASAS, SuperWASP, NSVS, Catalina, ASAS-SN, K2, and HATNet) and for 20 stars which we obtained with four 0.2-0.8 m telescopes at high geographical latitudes. Results. We present 142 rotation periods (73 new) from 0.12 d to 133 d and ten long-term activity cycles (six new) from 3.0 a to 11.5 a. We compare our determinations with those in the existing literature; we investigate the distribution of P rot in the CARMENES input catalogue,the amplitude of photometric variability, and their relation to vsin i and pEW(Halfa); and we identify three very active stars with new rotation periods between 0.34 d and 23.6 d.Comment: 34 pages, 43 figures, 2 appendix table

    CARMENES input catalog of M dwarfs: VII. New rotation periods for the survey stars and their correlations with stellar activity

    Full text link
    Abridged: We measured photometric and spectroscopic ProtP_{\rm rot} for a large sample of nearby bright M dwarfs with spectral types from M0 to M9, as part of our continual effort to fully characterize the Guaranteed Time Observation programme stars of the CARMENES survey. We determine ProtP_{\rm rot} for 129 stars. Combined with the literature, we tabulate ProtP_{\rm rot} for 261 stars, or 75% of our sample. We evaluate the plausibility of all periods available for this sample by comparing them with activity signatures and checking for consistency between multiple measurements. We find that 166 of these stars have independent evidence that confirmed their ProtP_{\rm rot}. There are inconsistencies in 27 periods, which we classify as debated. A further 68 periods are identified as provisional detections that could benefit from independent verification. We provide an empirical relation for the ProtP_{\rm rot} uncertainty as a function of the ProtP_{\rm rot} value, based on the dispersion of the measurements. We show that published formal errors seem to be often underestimated for periods 10\gtrsim 10 d. We highlight the importance of independent verification on ProtP_{\rm rot} measurements, especially for inactive M dwarfs. We examine rotation-activity relations with emission in X-rays, Hα\alpha, Ca II H & K, and surface magnetic field strengths. We find overall agreement with previous works, as well as tentative differences in the partially versus fully convective subsamples. We show ProtP_{\rm rot} as a function of stellar mass, age, and galactic kinematics. With the notable exception of three transiting planet systems and TZ Ari, all known planet hosts in this sample have Prot15P_{\rm rot} \gtrsim 15 d. This indicates that important limitations need to be overcome before the radial velocity technique can be routinely used to detect and study planets around young and active stars.Comment: Accepted for publication in A&

    An ultra-short-period transiting super-Earth orbiting the M3 dwarf TOI-1685

    Get PDF
    Funding: We acknowledge financial support from the Agencia Estatal de Investigación of the Ministerio de Ciencia, Innovación y Universidades and the ERDF through projects PID2019-109522GB-C5[1:4]/AEI/10.13039/501100011033, PGC2018-098153-B-C33, and the Centre of Excellence “Severo Ochoa” and “María deMaeztu” awards to the Instituto de Astrofísica de Canarias (SEV-2015-0548), Instituto de Astrofísica de Andalucía (SEV-2017-0709), and Centro de Astro-biología (MDM-2017-0737), the Generalitat de Catalunya/CERCA programme,“la Caixa” Foundation (100010434), European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 847648 (LCF/BQ/PI20/11760023), a University Research Support Grant from the National Astronomical Observatory of Japan, JSPS KAKENHI (JP15H02063, JP18H01265, JP18H05439, JP18H05442, and JP22000005), JSTPRESTO (JPMJPR1775), UK Science and Technology Facilities Council (ST/R000824/1), and NASA (NNX17AG24G).Dynamical histories of planetary systems, as well as the atmospheric evolution of highly irradiated planets, can be studied by characterizing the ultra-short-period planet population, which the TESS mission is particularly well suited to discover. Here, we report on the follow-up of a transit signal detected in the TESS sector 19 photometric time series of the M3.0 V star TOI-1685 (2MASS J04342248+4302148). We confirm the planetary nature of the transit signal, which has a period of Pb = 0.6691403−0.0000021+0.0000023 d, using precise radial velocity measurements taken with the CARMENES spectrograph. From the joint photometry and radial velocity analysis, we estimate the following parameters for TOI-1685 b: a mass of Mb = 3.78−0.63+0.63 M⊕, a radius of Rb = 1.70−0.07+0.07 R⊕, which together result in a bulk density of ρb = 4.21−0.82+0.95 g cm−3, and an equilibrium temperature of Teq = 1069−16+16 K. TOI-1685 b is the least dense ultra-short-period planet around an M dwarf known to date. TOI-1685 b is also one of the hottest transiting super-Earth planets with accurate dynamical mass measurements, which makes it a particularly attractive target for thermal emission spectroscopy. Additionally, we report with moderate evidence an additional non-transiting planet candidate in the system, TOI-1685 [c], which has an orbital period of Pc = 9.02−0.12+0.10 d.Publisher PDFPeer reviewe

    Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics

    Get PDF
    A detailed study is presented of the expected performance of the ATLAS detector. The reconstruction of tracks, leptons, photons, missing energy and jets is investigated, together with the performance of b-tagging and the trigger. The physics potential for a variety of interesting physics processes, within the Standard Model and beyond, is examined. The study comprises a series of notes based on simulations of the detector and physics processes, with particular emphasis given to the data expected from the first years of operation of the LHC at CERN

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns
    corecore