447 research outputs found

    The fidelity of dynamic signaling by noisy biomolecular networks

    Get PDF
    This is the final version of the article. Available from Public Library of Science via the DOI in this record.Cells live in changing, dynamic environments. To understand cellular decision-making, we must therefore understand how fluctuating inputs are processed by noisy biomolecular networks. Here we present a general methodology for analyzing the fidelity with which different statistics of a fluctuating input are represented, or encoded, in the output of a signaling system over time. We identify two orthogonal sources of error that corrupt perfect representation of the signal: dynamical error, which occurs when the network responds on average to other features of the input trajectory as well as to the signal of interest, and mechanistic error, which occurs because biochemical reactions comprising the signaling mechanism are stochastic. Trade-offs between these two errors can determine the system's fidelity. By developing mathematical approaches to derive dynamics conditional on input trajectories we can show, for example, that increased biochemical noise (mechanistic error) can improve fidelity and that both negative and positive feedback degrade fidelity, for standard models of genetic autoregulation. For a group of cells, the fidelity of the collective output exceeds that of an individual cell and negative feedback then typically becomes beneficial. We can also predict the dynamic signal for which a given system has highest fidelity and, conversely, how to modify the network design to maximize fidelity for a given dynamic signal. Our approach is general, has applications to both systems and synthetic biology, and will help underpin studies of cellular behavior in natural, dynamic environments.We acknowledge support from a Medical Research Council and Engineering and Physical Sciences Council funded Fellowship in Biomedical Informatics (CGB) and a Scottish Universities Life Sciences Alliance chair in Systems Biology (PSS). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Ferroelectricity induced by interatomic magnetic exchange interaction

    Full text link
    Multiferroics, where two or more ferroic order parameters coexist, is one of the hottest fields in condensed matter physics and materials science[1-9]. However, the coexistence of magnetism and conventional ferroelectricity is physically unfavoured[10]. Recently several remedies have been proposed, e.g., improper ferroelectricity induced by specific magnetic[6] or charge orders[2]. Guiding by these theories, currently most research is focused on frustrated magnets, which usually have complicated magnetic structure and low magnetic ordering temperature, consequently far from the practical application. Simple collinear magnets, which can have high magnetic transition temperature, have never been considered seriously as the candidates for multiferroics. Here, we argue that actually simple interatomic magnetic exchange interaction already contains a driving force for ferroelectricity, thus providing a new microscopic mechanism for the coexistence and strong coupling between ferroelectricity and magnetism. We demonstrate this mechanism by showing that even the simplest antiferromagnetic (AFM) insulator MnO, can display a magnetically induced ferroelectricity under a biaxial strain

    Perceptions and behaviors related to hand hygiene for the prevention of H1N1 influenza transmission among Korean university students during the peak pandemic period

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study was performed to better assess the perceptions, motivating factors, and behaviors associated with the use of hand washing to prevent H1N1 influenza transmission during the peak pandemic period in Korea.</p> <p>Methods</p> <p>A cross-sectional survey questionnaire was completed by 942 students at a university campus in Suwon, Korea, between December 1 and 8, 2009. The survey included questions regarding individual perceptions, motivating factors, and behaviors associated with hand washing for the prevention of H1N1 influenza transmission.</p> <p>Results</p> <p>Compared to one year prior, 30.3% of participants reported increasing their hand washing frequency. Female students were more likely to practice more frequent hand washing. Women also perceived the effectiveness of hand washing to be lower, and illness severity and personal susceptibility to H1N1 infection to be higher. Study participants who were female (OR: 1.79-3.90) who perceived of hand washing to be effective (OR: 1.34-12.15) and illness severity to be greater (OR: 1.00-3.12) washed their hands more frequently.</p> <p>Conclusions</p> <p>Korean students increased their frequency of hand hygiene practices during the pandemic, with significant gender differences existing in the attitudes and behaviors related to the use of hand hygiene as a means of disease prevention. Here, the factors that affected hand washing behavior were similar to those identified at the beginning of the H1N1 or SARS pandemics, suggesting that public education campaigns regarding hand hygiene are effective in altering individual hand hygiene habits during the peak periods of influenza transmission.</p

    The thalamic mGluR1-PLC??4 pathway is critical in sleep architecture

    Get PDF
    The transition from wakefulness to a nonrapid eye movement (NREM) sleep state at the onset of sleep involves a transition from low-voltage, high-frequency irregular electroencephalography (EEG) waveforms to large-amplitude, low-frequency EEG waveforms accompanying synchronized oscillatory activity in the thalamocortical circuit. The thalamocortical circuit consists of reciprocal connections between the thalamus and cortex. The cortex sends strong excitatory feedback to the thalamus, however the function of which is unclear. In this study, we investigated the role of the thalamic metabotropic glutamate receptor 1 (mGluR1)-phospholipase C ??4 (PLC??4) pathway in sleep control in PLC??4-deficient (PLC??4-/-) mice. The thalamic mGluR1-PLC??4 pathway contains synapses that receive corticothalamic inputs. In PLC??4-/- mice, the transition from wakefulness to the NREM sleep state was stimulated, and the NREM sleep state was stabilized, which resulted in increased NREM sleep. The power density of delta (??) waves increased in parallel with the increased NREM sleep. These sleep phenotypes in PLC??4-/- mice were consistent in TC-restricted PLC??4 knockdown mice. Moreover, in vitro intrathalamic oscillations were greatly enhanced in the PLC??4-/- slices. The results of our study showed that thalamic mGluR1-PLC??4 pathway was critical in controlling sleep architecture.ope

    Nitroxyl (HNO) Stimulates Soluble Guanylyl Cyclase to Suppress Cardiomyocyte Hypertrophy and Superoxide Generation

    Get PDF
    Background: New therapeutic targets for cardiac hypertrophy, an independent risk factor for heart failure and death, are essential. HNO is a novel redox sibling of NON attracting considerable attention for the treatment of cardiovascular disorders, eliciting cGMP-dependent vasodilatation yet cGMP-independent positive inotropy. The impact of HNO on cardiac hypertrophy (which is negatively regulated by cGMP) however has not been investigated. Methods: Neonatal rat cardiomyocytes were incubated with angiotensin II (Ang II) in the presence and absence of the HNO donor Angeli’s salt (sodium trioxodinitrate) or B-type natriuretic peptide, BNP (all 1 mmol/L). Hypertrophic responses and its triggers, as well as cGMP signaling, were determined. Results: We now demonstrate that Angeli’s salt inhibits Ang II-induced hypertrophic responses in cardiomyocytes, including increases in cardiomyocyte size, de novo protein synthesis and b-myosin heavy chain expression. Angeli’s salt also suppresses Ang II induction of key triggers of the cardiomyocyte hypertrophic response, including NADPH oxidase (on both Nox2 expression and superoxide generation), as well as p38 mitogen-activated protein kinase (p38MAPK). The antihypertrophic, superoxide-suppressing and cGMP-elevating effects of Angeli’s salt were mimicked by BNP. We also demonstrate that the effects of Angeli’s salt are specifically mediated by HNO (with no role for NON or nitrite), with subsequent activation of cardiomyocyte soluble guanylyl cyclase (sGC) and cGMP signaling (on both cGMP-dependen

    Classical Flt3L-dependent dendritic cells control immunity to protein vaccine

    Get PDF
    DCs are critical for initiating immunity. The current paradigm in vaccine biology is that DCs migrating from peripheral tissue and classical lymphoid-resident DCs (cDCs) cooperate in the draining LNs to initiate priming and proliferation of T cells. Here, we observe subcutaneous immunity is Fms-like tyrosine kinase 3 ligand (Flt3L) dependent. Flt3L is rapidly secreted after immunization; Flt3 deletion reduces T cell responses by 50%. Flt3L enhances global T cell and humoral immunity as well as both the numbers and antigen capture capacity of migratory DCs (migDCs) and LN-resident cDCs. Surprisingly, however, we find immunity is controlled by cDCs and actively tempered in vivo by migDCs. Deletion of Langerin+ DC or blockade of DC migration improves immunity. Consistent with an immune-regulatory role, transcriptomic analyses reveals different skin migDC subsets in both mouse and human cluster together, and share immune-suppressing gene expression and regulatory pathways. These data reveal that protective immunity to protein vaccines is controlled by Flt3L-dependent, LN-resident cDCs.</jats:p

    Identification of Synaptic Targets of Drosophila Pumilio

    Get PDF
    Drosophila Pumilio (Pum) protein is a translational regulator involved in embryonic patterning and germline development. Recent findings demonstrate that Pum also plays an important role in the nervous system, both at the neuromuscular junction (NMJ) and in long-term memory formation. In neurons, Pum appears to play a role in homeostatic control of excitability via down regulation of para, a voltage gated sodium channel, and may more generally modulate local protein synthesis in neurons via translational repression of eIF-4E. Aside from these, the biologically relevant targets of Pum in the nervous system remain largely unknown. We hypothesized that Pum might play a role in regulating the local translation underlying synapse-specific modifications during memory formation. To identify relevant translational targets, we used an informatics approach to predict Pum targets among mRNAs whose products have synaptic localization. We then used both in vitro binding and two in vivo assays to functionally confirm the fidelity of this informatics screening method. We find that Pum strongly and specifically binds to RNA sequences in the 3â€ČUTR of four of the predicted target genes, demonstrating the validity of our method. We then demonstrate that one of these predicted target sequences, in the 3â€ČUTR of discs large (dlg1), the Drosophila PSD95 ortholog, can functionally substitute for a canonical NRE (Nanos response element) in vivo in a heterologous functional assay. Finally, we show that the endogenous dlg1 mRNA can be regulated by Pumilio in a neuronal context, the adult mushroom bodies (MB), which is an anatomical site of memory storage

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Compact groups with a dense free abelian subgroup

    Get PDF
    The compact groups having a dense infinite cyclic subgroup (known as monothetic compact groups) have been studied by many authors for their relevance and nice applications. In this paper we describe in full details the compact groups KK with a dense free abelian subgroup FF and we describe the minimum rank rt(K)r_t(K) of such a subgroup FF of KK. Surprisingly, it is either finite or coincides with the density character d(K)d(K) of KK.
    • 

    corecore