576 research outputs found

    Saddle point localization of molecular wavefunctions

    Get PDF
    The quantum mechanical description of isomerization is based on bound eigenstates of the molecular potential energy surface. For the near-minimum regions there is a textbook-based relationship between the potential and eigenenergies. Here we show how the saddle point region that connects the two minima is encoded in the eigenstates of the model quartic potential and in the energy levels of the [H, C, N] potential energy surface. We model the spacing of the eigenenergies with the energy dependent classical oscillation frequency decreasing to zero at the saddle point. The eigenstates with the smallest spacing are localized at the saddle point. The analysis of the HCN???HNC isomerization states shows that the eigenstates with small energy spacing relative to the effective (v1, v3, l) bending potentials are highly localized in the bending coordinate at the transition state. These spectroscopically detectable states represent a chemical marker of the transition state in the eigenenergy spectrum. The method developed here provides a basis for modeling characteristic patterns in the eigenenergy spectrum of bound states

    Stemming the Tide of Antibiotic Resistance (STAR): A protocol for a trial of a complex intervention addressing the 'why' and 'how' of appropriate antibiotic prescribing in general practice

    Get PDF
    BACKGROUND: After some years of a downward trend, antibiotic prescribing rates in the community have tended to level out in many countries. There is also wide variation in antibiotic prescribing between general practices, and between countries. There are still considerable further gains that could be made in reducing inappropriate antibiotic prescribing, but complex interventions are required. Studies to date have generally evaluated the effect of interventions on antibiotic prescribing in a single consultation and pragmatic evaluations that assess maintenance of new skills are rare. This paper describes the protocol for a pragmatic, randomized evaluation of a complex intervention aimed at reducing antibiotic prescribing by primary care clinicians. METHODS AND DESIGN: We developed a Social Learning Theory based, blended learning program (on-line learning, a practice based seminar, and context bound learning) called the STAR Educational Program. The 'why of change' is addressed by providing clinicians in general practice with information on antibiotic resistance in urine samples submitted by their practice and their antibiotic prescribing data, and facilitating a practice-based seminar on the implications of this data. The 'how of change' is addressed through context-bound communication skills training and information on antibiotic indication and choice. This intervention will be evaluated in a trial involving 60 general practices, with general practice as the unit of randomization (clinicians from each practice to either receive the STAR Educational Program or not) and analysis. The primary outcome will be the number of antibiotic items dispensed over one year. An economic and process evaluation will also be conducted. DISCUSSION: This trial will be the first to evaluate the effectiveness of this type of theory-based, blended learning intervention aimed at reducing antibiotic prescribing by primary care clinicians. Novel aspects include feedback of practice level data on antimicrobial resistance and prescribing, use of principles from motivational interviewing, training in enhanced communication skills that incorporates context-bound experience and reflection, and using antibiotic dispensing over one year (as opposed to antibiotic prescribing in a single consultation) as the main outcome

    Effect of Biodiversity Changes in Disease Risk: Exploring Disease Emergence in a Plant-Virus System

    Get PDF
    The effect of biodiversity on the ability of parasites to infect their host and cause disease (i.e. disease risk) is a major question in pathology, which is central to understand the emergence of infectious diseases, and to develop strategies for their management. Two hypotheses, which can be considered as extremes of a continuum, relate biodiversity to disease risk: One states that biodiversity is positively correlated with disease risk (Amplification Effect), and the second predicts a negative correlation between biodiversity and disease risk (Dilution Effect). Which of them applies better to different host-parasite systems is still a source of debate, due to limited experimental or empirical data. This is especially the case for viral diseases of plants. To address this subject, we have monitored for three years the prevalence of several viruses, and virus-associated symptoms, in populations of wild pepper (chiltepin) under different levels of human management. For each population, we also measured the habitat species diversity, host plant genetic diversity and host plant density. Results indicate that disease and infection risk increased with the level of human management, which was associated with decreased species diversity and host genetic diversity, and with increased host plant density. Importantly, species diversity of the habitat was the primary predictor of disease risk for wild chiltepin populations. This changed in managed populations where host genetic diversity was the primary predictor. Host density was generally a poorer predictor of disease and infection risk. These results support the dilution effect hypothesis, and underline the relevance of different ecological factors in determining disease/infection risk in host plant populations under different levels of anthropic influence. These results are relevant for managing plant diseases and for establishing conservation policies for endangered plant species

    Measurement of the Negative Muon Anomalous Magnetic Moment to 0.7 ppm

    Full text link
    The anomalous magnetic moment of the negative muon has been measured to a precision of 0.7 parts per million (ppm) at the Brookhaven Alternating Gradient Synchrotron. This result is based on data collected in 2001, and is over an order of magnitude more precise than the previous measurement of the negative muon. The result a_mu= 11 659 214(8)(3) \times 10^{-10} (0.7 ppm), where the first uncertainty is statistical and the second is sytematic, is consistend with previous measurements of the anomaly for the positive and negative muon. The average for the muon anomaly a_{mu}(exp) = 11 659 208(6) \times 10^{-10} (0.5ppm).Comment: 4 pages, 4 figures, submitted to Physical Review Letters, revised to reflect referee comments. Text further revised to reflect additional referee comments and a corrected Fig. 3 replaces the older versio

    Limited contribution of permafrost carbon to methane release from thawing peatlands

    Get PDF
    Models predict that thaw of permafrost soils at northern high-latitudes will release tens of billions of tonnes of carbon (C) to the atmosphere by 21001-3. The effect on the Earth's climate depends strongly on the proportion of this C which is released as the more powerful greenhouse gas methane (CH4), rather than carbon dioxide (CO2)1,4; even if CH4 emissions represent just 2% of the C release, they would contribute approximately one quarter of the climate forcing5. In northern peatlands, thaw of ice-rich permafrost causes surface subsidence (thermokarst) and water-logging6, exposing substantial stores (10s of kg C m-2, ref. 7) of previously-frozen organic matter to anaerobic conditions, and generating ideal conditions for permafrost-derived CH4 release. Here we show that, contrary to expectations, although substantial CH4 fluxes (>20 g CH4 m 2 yr-1) were recorded from thawing peatlands in northern Canada, only a small amount was derived from previously-frozen C (<2 g CH4 m-2 yr-1). Instead, fluxes were driven by anaerobic decomposition of recent C inputs. We conclude that thaw-induced changes in surface wetness and wetland area, rather than the anaerobic decomposition of previously-frozen C, may determine the effect of permafrost thaw on CH4 emissions from northern peatlands

    Phenethyl isothiocyanate exhibits antileukemic activity in vitro and in vivo by inactivation of Akt and activation of JNK pathways

    Get PDF
    Effects of phenethyl isothiocyanate (PEITC) have been investigated in human leukemia cells (U937, Jurkat, and HL-60) as well as in primary human acute myeloid leukemia (AML) cells in relation to apoptosis and cell signaling events. Exposure of cells to PEITC resulted in pronounced increase in the activation of caspase-3, -8, -9, cleavage/degradation of PARP, and apoptosis in dose- and time-dependent manners. These events were accompanied by the caspase-independent downregulation of Mcl-1, inactivation of Akt, as well as activation of Jun N-terminal kinase (JNK). Inhibition of PI3K/Akt by LY294002 significantly enhanced PEITC-induced apoptosis. Conversely, enforced activation of Akt by a constitutively active Akt construct markedly abrogated PEITC-mediated JNK activation, Mcl-1 downregulation, caspase activation, and apoptosis, and also interruption of the JNK pathway by pharmacological or genetically (e.g., siRNA) attenuated PEITC-induced apoptosis. Finally, administration of PEITC markedly inhibited tumor growth and induced apoptosis in U937 xenograft model in association with inactivation of Akt, activation of JNK, as well as downregulation of Mcl-1. Taken together, these findings represent a novel mechanism by which agents targeting Akt/JNK/Mcl-1 pathway potentiate PEITC lethality in transformed and primary human leukemia cells and inhibitory activity of tumor growth of U937 xenograft model

    Measurement of the Forward-Backward Asymmetry in the B -> K(*) mu+ mu- Decay and First Observation of the Bs -> phi mu+ mu- Decay

    Get PDF
    We reconstruct the rare decays B+K+μ+μB^+ \to K^+\mu^+\mu^-, B0K(892)0μ+μB^0 \to K^{*}(892)^0\mu^+\mu^-, and Bs0ϕ(1020)μ+μB^0_s \to \phi(1020)\mu^+\mu^- in a data sample corresponding to 4.4fb14.4 {\rm fb^{-1}} collected in ppˉp\bar{p} collisions at s=1.96TeV\sqrt{s}=1.96 {\rm TeV} by the CDF II detector at the Fermilab Tevatron Collider. Using 121±16121 \pm 16 B+K+μ+μB^+ \to K^+\mu^+\mu^- and 101±12101 \pm 12 B0K0μ+μB^0 \to K^{*0}\mu^+\mu^- decays we report the branching ratios. In addition, we report the measurement of the differential branching ratio and the muon forward-backward asymmetry in the B+B^+ and B0B^0 decay modes, and the K0K^{*0} longitudinal polarization in the B0B^0 decay mode with respect to the squared dimuon mass. These are consistent with the theoretical prediction from the standard model, and most recent determinations from other experiments and of comparable accuracy. We also report the first observation of the Bs0ϕμ+μdecayandmeasureitsbranchingratioB^0_s \to \phi\mu^+\mu^- decay and measure its branching ratio {\mathcal{B}}(B^0_s \to \phi\mu^+\mu^-) = [1.44 \pm 0.33 \pm 0.46] \times 10^{-6}using using 27 \pm 6signalevents.Thisiscurrentlythemostrare signal events. This is currently the most rare B^0_s$ decay observed.Comment: 7 pages, 2 figures, 3 tables. Submitted to Phys. Rev. Let

    Induction of lung lesions in Wistar rats by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and its inhibition by aspirin and phenethyl isothiocyanate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The development of effective chemopreventive agents against cigarette smoke-induced lung cancer could be greatly facilitated by suitable laboratory animal models, such as animals treated with the tobacco-specific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). In the current study, we established a novel lung cancer model in Wistar rats treated with NNK. Using this model, we assessed the effects of two chemopreventive agents, aspirin and phenethyl isothiocyanate (PEITC), on tumor progression.</p> <p>Methods</p> <p>First, rats were treated with a single-dose of NNK by intratracheal instillation; control rats received iodized oil. The animals were then sacrificed on the indicated day after drug administration and examined for tumors in the target organs. PCNA, p63 and COX-2 expression were analyzed in the preneoplastic lung lesions. Second, rats were treated with a single-dose of NNK (25 mg/kg body weight) in the absence or presence of aspirin and/or PEITC in the daily diet. The control group received only the vehicle in the regular diet. The animals were sacrificed on day 91 after bronchial instillation of NNK. Lungs were collected and processed for histopathological and immunohistochemical assays.</p> <p>Results</p> <p>NNK induced preneoplastic lesions in lungs, including 33.3% alveolar hyperplasia and 55.6% alveolar atypical dysplasia. COX-2 expression increased similarly in alveolar hyperplasia and alveolar atypical dysplasia, while PCNA expression increased more significantly in the latter than the former. No p63 expression was detected in the preneoplastic lesions. In the second study, the incidences of alveolar atypical dysplasia were reduced to 10%, 10% and 0%, respectively, in the aspirin, PEITC and aspirin and PEITC groups, compared with 62.5% in the carcinogen-treated control group. COX-2 expression decreased after dietary aspirin or aspirin and PEITC treatment. PCNA expression was significantly reduced in the aspirin and PEITC group.</p> <p>Conclusion</p> <p>(1) A single dose of 25 mg/kg body weight NNK by intratracheal instillation is sufficient to induce preneoplastic lesions in Wistar rat lungs. (2) COX-2 takes part in NNK-induced tumorigenesis but is not involved in proliferation. (3) Aspirin and PEITC have protective effects in the early stages of tumor progression initiated by NNK.</p

    Preventing disease through opportunistic, rapid engagement by primary care teams using behaviour change counselling (PRE-EMPT): protocol for a general practice-based cluster randomised trial

    Get PDF
    BACKGROUND: Smoking, excessive alcohol consumption, lack of exercise and an unhealthy diet are the key modifiable factors contributing to premature morbidity and mortality in the developed world. Brief interventions in health care consultations can be effective in changing single health behaviours. General Practice holds considerable potential for primary prevention through modifying patients' multiple risk behaviours, but feasible, acceptable and effective interventions are poorly developed, and uptake by practitioners is low. Through a process of theoretical development, modeling and exploratory trials, we have developed an intervention called Behaviour Change Counselling (BCC) derived from Motivational Interviewing (MI). This paper describes the protocol for an evaluation of a training intervention (the Talking Lifestyles Programme) which will enable practitioners to routinely use BCC during consultations for the above four risk behaviours. METHODS/DESIGN: This cluster randomised controlled efficacy trial (RCT) will evaluate the outcomes and costs of this training intervention for General Practitioners (GPs) and nurses. Training methods will include: a practice-based seminar, online self-directed learning, and reflecting on video recorded and simulated consultations. The intervention will be evaluated in 29 practices in Wales, UK; two clinicians will take part (one GP and one nurse) from each practice. In intervention practices both clinicians will receive training. The aim is to recruit 2000 patients into the study with an expected 30% drop out. The primary outcome will be the proportion of patients making changes in one or more of the four behaviours at three months. Results will be compared for patients seeing clinicians trained in BCC with patients seeing non-BCC trained clinicians. Economic and process evaluations will also be conducted. DISCUSSION: Opportunistic engagement by health professionals potentially represents a cost effective medical intervention. This study integrates an existing, innovative intervention method with an innovative training model to enable clinicians to routinely use BCC, providing them with new tools to encourage and support people to make healthier choices. This trial will evaluate effectiveness in primary care and determine costs of the intervention
    corecore