170 research outputs found

    Reliability of fluctuation-induced transport in a Maxwell-demon-type engine

    Get PDF
    We study the transport properties of an overdamped Brownian particle which is simultaneously in contact with two thermal baths. The first bath is modeled by an additive thermal noise at temperature TAT_A. The second bath is associated with a multiplicative thermal noise at temperature TBT_B. The analytical expressions for the particle velocity and diffusion constant are derived for this system, and the reliability or coherence of transport is analyzed by means of their ratio in terms of a dimensionless P\'{e}clet number. We find that the transport is not very coherent, though one can get significantly higher currents.Comment: 14 pages, 5 figure

    Multiple Andreev Reflection and Giant Excess Noise in Diffusive Superconductor/Normal-Metal/Superconductor Junctions

    Get PDF
    We have studied superconductor/normal metal/superconductor (SNS) junctions consisting of short Au or Cu wires between Nb or Al banks. The Nb based junctions display inherent electron heating effects induced by the high thermal resistance of the NS boundaries. The Al based junctions show in addition subharmonic gap structures in the differential conductance dI/dV and a pronounced peak in the excess noise at very low voltages V. We suggest that the noise peak is caused by fluctuations of the supercurrent at the onset of Josephson coupling between the superconducting banks. At intermediate temperatures where the supercurrent is suppressed a noise contribution ~1/V remains, which may be interpreted as shot noise originating from large multiple charges.Comment: 7 pages, 7 figures, extended versio

    X-ray standing wave and reflectometric characterization of multilayer structures

    Get PDF
    Microstructural characterization of synthetic periodic multilayers by x-ray standing waves have been presented. It has been shown that the analysis of multilayers by combined x-ray reflectometry (XRR) and x-ray standing wave (XSW) techniques can overcome the deficiencies of the individual techniques in microstructural analysis. While interface roughnesses are more accurately determined by the XRR technique, layer composition is more accurately determined by the XSW technique where an element is directly identified by its characteristic emission. These aspects have been explained with an example of a 20 period Pt/C multilayer. The composition of the C-layers due to Pt dissolution in the C-layers, Ptx_{x}C1−x_{1-x}, has been determined by the XSW technique. In the XSW analysis when the whole amount of Pt present in the C-layers is assumed to be within the broadened interface, it l eads to larger interface roughness values, inconsistent with those determined by the XRR technique. Constraining the interface roughness values to those determined by the XRR technique, requires an additional amount of dissolved Pt in the C-layers to expl ain the Pt fluorescence yield excited by the standing wave field. This analysis provides the average composition Ptx_{x}C1−x_{1-x} of the C-layers .Comment: 12 pages RevTex, 10 eps figures embedde

    Multiple current reversals in forced inhomogeneous ratchets

    Get PDF
    Transport properties of overdamped Brownian paricles in a rocked thermal ratchet with space dependent friction coefficient is studied. By tuning the parameters, the direction of current exhibit multiple reversals, both as a function of the thermal noise strength as well as the amplitude of rocking force. Current reversals also occur under deterministic conditions and exhibits intriguing structure. All these features arise due to mutual interplay between potential asymmetry,noise, driving frequency and inhomogeneous friction.Comment: 6 figure

    Quantum walks: a comprehensive review

    Full text link
    Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing Journa

    Long-range Angular Correlations On The Near And Away Side In P-pb Collisions At √snn=5.02 Tev

    Get PDF
    7191/Mar294

    Measurement of jet suppression in central Pb-Pb collisions at root s(NN)=2.76 TeV

    Get PDF
    The transverse momentum(p(T)) spectrum and nuclear modification factor (R-AA) of reconstructed jets in 0-10% and 10-30% central Pb-Pb collisions at root s(NN) = 2.76 TeV were measured. Jets were reconstructed using the anti-k(T) jet algorithm with a resolution parameter of R = 0.2 from charged and neutral particles, utilizing the ALICE tracking detectors and Electromagnetic Calorimeter (EMCal). The jet p(T) spectra are reported in the pseudorapidity interval of \eta(jet)\ 5 GeV/c to suppress jets constructed from the combinatorial background in Pb-Pb collisions. The leading charged particle requirement applied to jet spectra both in pp and Pb-Pb collisions had a negligible effect on the R-AA. The nuclear modification factor R-AA was found to be 0.28 +/- 0.04 in 0-10% and 0.35 +/- 0.04 in 10-30% collisions, independent of p(T), jet within the uncertainties of the measurement. The observed suppression is in fair agreement with expectations from two model calculations with different approaches to jet quenching. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V.Peer reviewe
    • 

    corecore