276 research outputs found

    Quantum electromagnetic field in a three dimensional oscillating cavity

    Full text link
    We compute the photon creation inside a perfectly conducting, three dimensional oscillating cavity, taking the polarization of the electromagnetic field into account. As the boundary conditions for this field are both of Dirichlet and (generalized) Neumann type, we analyze as a preliminary step the dynamical Casimir effect for a scalar field satisfying generalized Neumann boundary conditions. We show that particle production is enhanced with respect to the case of Dirichlet boundary conditions. Then we consider the transverse electric and transverse magnetic polarizations of the electromagnetic field. For resonant frequencies, the total number of photons grows exponentially in time for both polarizations, the rate being greater for transverse magnetic modes.Comment: 11 pages, 1 figur

    Time dependent neutrino billiards

    Full text link
    Quantum dynamica of a massless Dirac particle in time-dependent 1D box and circular billiard with time-dependent radius is studied. An exact analytical wave functions and eigenvalues are obtained for the case of linear time-dependence of the boundary position

    Creation of photons in an oscillating cavity with two moving mirrors

    Full text link
    We study the creation of photons in a one dimensional oscillating cavity with two perfectly conducting moving walls. By means of a conformal transformation we derive a set of generalized Moore's equations whose solution contains the whole information of the radiation field within the cavity. For the case of resonant oscillations we solve these equations using a renormalization group procedure that appropriately deals with the secular behaviour present in a naive perturbative approach. We study the time evolution of the energy density profile and of the number of created photons inside the cavity.Comment: LaTex file, 17 pages, 3 figures, uses epsf.st

    Resonant photon creation in a three dimensional oscillating cavity

    Get PDF
    We analyze the problem of photon creation inside a perfectly conducting, rectangular, three dimensional cavity with one oscillating wall. For some particular values of the frequency of the oscillations the system is resonant. We solve the field equation using multiple scale analysis and show that the total number of photons inside the cavity grows exponentially in time. This is also the case for slightly off-resonance situations. Although the spectrum of a cavity is in general non equidistant, we show that the modes of the electromagnetic field can be coupled, and that the rate of photon creation strongly depends on this coupling. We also analyze the thermal enhancement of the photon creation.Comment: 13 pages. New section on off-resonance motion is included. To appear in Physical Review

    A dynamical chiral bag model

    Get PDF
    We study a dynamical chiral bag model, in which massless fermions are confined within an impenetrable but movable bag coupled to meson fields. The self-consistent motion of the bag is obtained by solving the equations of motion exactly assuming spherical symmetry. When the bag interacts with an external meson wave we find three different kinds of resonances: {\it fermionic}, {\it geometric}, and σ\sigma-resonances. We discuss the phenomenological implications of our results.Comment: Two columns, 11 pages, 9 figures. Submitted to Physical Review

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters

    Measurement of isolated photon production in pp and PbPb collisions at sqrt(sNN) = 2.76 TeV

    Get PDF
    Isolated photon production is measured in proton-proton and lead-lead collisions at nucleon-nucleon centre-of-mass energies of 2.76 TeV in the pseudorapidity range |eta|<1.44 and transverse energies ET between 20 and 80 GeV with the CMS detector at the LHC. The measured ET spectra are found to be in good agreement with next-to-leading-order perturbative QCD predictions. The ratio of PbPb to pp isolated photon ET-differential yields, scaled by the number of incoherent nucleon-nucleon collisions, is consistent with unity for all PbPb reaction centralities.Comment: Submitted to Physics Letters

    Tides in colliding galaxies

    Full text link
    Long tails and streams of stars are the most noticeable upshots of galaxy collisions. Their origin as gravitational, tidal, disturbances has however been recognized only less than fifty years ago and more than ten years after their first observations. This Review describes how the idea of galactic tides emerged, in particular thanks to the advances in numerical simulations, from the first ones that included tens of particles to the most sophisticated ones with tens of millions of them and state-of-the-art hydrodynamical prescriptions. Theoretical aspects pertaining to the formation of tidal tails are then presented. The third part of the review turns to observations and underlines the need for collecting deep multi-wavelength data to tackle the variety of physical processes exhibited by collisional debris. Tidal tails are not just stellar structures, but turn out to contain all the components usually found in galactic disks, in particular atomic / molecular gas and dust. They host star-forming complexes and are able to form star-clusters or even second-generation dwarf galaxies. The final part of the review discusses what tidal tails can tell us (or not) about the structure and content of present-day galaxies, including their dark components, and explains how tidal tails may be used to probe the past evolution of galaxies and their mass assembly history. On-going deep wide-field surveys disclose many new low-surface brightness structures in the nearby Universe, offering great opportunities for attempting galactic archeology with tidal tails.Comment: 46 pages, 13 figures, Review to be published in "Tidal effects in Astronomy and Astrophysics", Lecture Notes in Physics. Comments are most welcom
    corecore