2,005 research outputs found
Study of an attitude reference system utilizing an electrically suspended gyro final report, 1 aug. 1964 - 31 mar. 1965
Miniature electrically suspended gyroscope for spacecraft attitude reference syste
Numerical Simulation of Nonclassical Aileron Buzz over 3D Unstructured Adaptive Meshes
Aileron buzz refers to the self–sustained oscillations of an aileron flapping behind an aircraft wing. Nonclassical buzz occurs in transonic flow regimes, and it is characterized by the oscillation of the shock wave location on and off the aileron surface. In order to simulate this phenomenon, we couple the rigid aileron dynamics with the finite volume ALE compressible flow solver Flowmesh. Dynamic grid adaptation is performed through the MMG remeshing library; a local conservative procedure tracks each mesh modification in time, thus avoiding any explicit solution interpolation step, while complying with the moving boundaries and performing solution–driven adaptation. We simulate a simplified test case, consisting of a straight wing between two walls, with a finite–span aileron. Simulations of different aileron spans highlight the 3D flow effects on the frequency of the aileron oscillations. Simulations over an alternative 2D setup, in which the aileron is still connected to the main wing by means of two flexible elements, show the influence of the air gap between aileron and wing on the shock wave movement and on the development of self–sustained aileron oscillations
CURVACE - CURVed Artificial Compound Eyes
International audienceCURVACE aims at designing, developing, and assessing CURVed Artificial Compound Eyes, a radically novel family of vision systems. This innovative approach will provide more efficient visual abilities for embedded applications that require motion analysis in low-power and small packages. Compared to conventional cameras, artificial compound eyes will offer a much larger field of view with negligible distortion and exceptionally high temporal resolution in smaller size and weight that will fit the requirements of a wide range of applications
Proteomics analysis of bladder cancer invasion: targeting EIF3D for therapeutic intervention
Patients with advanced bladder cancer have poor outcomes, indicating a need for more efficient therapeutic approaches. This study characterizes proteomic changes underlying bladder cancer invasion aiming for the better understanding of disease pathophysiology and identification of drug targets. High resolution liquid chromatography coupled to tandem mass spectrometry analysis of tissue specimens from patients with non-muscle invasive (NMIBC, stage pTa) and muscle invasive bladder cancer (MIBC, stages pT2+) was conducted. Comparative analysis identified 144 differentially expressed proteins between analyzed groups. These included proteins previously associated with bladder cancer and also additional novel such as PGRMC1, FUCA1, BROX and PSMD12, which were further confirmed by immunohistochemistry. Pathway and interactome analysis predicted strong activation in muscle invasive bladder cancer of pathways associated with protein synthesis e.g. eIF2 and mTOR signaling. Knock-down of eukaryotic translation initiation factor 3 subunit D (EIF3D) (overexpressed in muscle invasive disease) in metastatic T24M bladder cancer cells inhibited cell proliferation, migration, and colony formation in vitro and decreased tumor growth in xenograft models. By contrast, knocking down GTP-binding protein Rheb (which is upstream of EIF3D) recapitulated the effects of EIF3D knockdown in vitro, but not in vivo. Collectively, this study represents a comprehensive analysis of NMIBC and MIBC providing a resource for future studies. The results highlight EIF3D as a potential therapeutic target
Radiation hardness qualification of PbWO4 scintillation crystals for the CMS Electromagnetic Calorimeter
This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPEnsuring the radiation hardness of PbWO4 crystals was one of the main priorities during the construction of the electromagnetic calorimeter of the CMS experiment at CERN. The production on an industrial scale of radiation hard crystals and their certification over a period of several years represented a difficult challenge both for CMS and for the crystal suppliers. The present article reviews the related scientific and technological problems encountered
Intercalibration of the barrel electromagnetic calorimeter of the CMS experiment at start-up
Calibration of the relative response of the individual channels of the barrel electromagnetic calorimeter of the CMS detector was accomplished, before installation, with cosmic ray muons and test beams. One fourth of the calorimeter was exposed to a beam of high energy electrons and the relative calibration of the channels, the intercalibration, was found to be reproducible to a precision of about 0.3%. Additionally, data were collected with cosmic rays for the entire ECAL barrel during the commissioning phase. By comparing the intercalibration constants obtained with the electron beam data with those from the cosmic ray data, it is demonstrated that the latter provide an intercalibration precision of 1.5% over most of the barrel ECAL. The best intercalibration precision is expected to come from the analysis of events collected in situ during the LHC operation. Using data collected with both electrons and pion beams, several aspects of the intercalibration procedures based on electrons or neutral pions were investigated
Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV
A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay
channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7
TeV is presented. The data were collected at the LHC, with the CMS detector,
and correspond to an integrated luminosity of 4.6 inverse femtobarns. No
significant excess is observed above the background expectation, and upper
limits are set on the Higgs boson production cross section. The presence of the
standard model Higgs boson with a mass in the 270-440 GeV range is excluded at
95% confidence level.Comment: Submitted to JHE
Search for New Physics with Jets and Missing Transverse Momentum in pp collisions at sqrt(s) = 7 TeV
A search for new physics is presented based on an event signature of at least
three jets accompanied by large missing transverse momentum, using a data
sample corresponding to an integrated luminosity of 36 inverse picobarns
collected in proton--proton collisions at sqrt(s)=7 TeV with the CMS detector
at the LHC. No excess of events is observed above the expected standard model
backgrounds, which are all estimated from the data. Exclusion limits are
presented for the constrained minimal supersymmetric extension of the standard
model. Cross section limits are also presented using simplified models with new
particles decaying to an undetected particle and one or two jets
- …