235 research outputs found

    Traumatic brain injury as a risk factor for Alzheimer disease. Comparison of two retrospective autopsy cohorts with evaluation of ApoE genotype

    Get PDF
    BACKGROUND AND PURPOSE: The impact of traumatic brain injury (TBI) on the pathogenesis of Alzheimer disease (AD) is still controversial. The aim of our retrospective autopsy study was to assess the impact of TBE and ApoE allele frequency on the development of AD. MATERIAL AND METHODS: We examined 1. the incidence of AD pathology (Braak stageing, CERAD, NIA-Reagan Institute criteria) in 58 consecutive patients (mean age ± SD 77.0 ± 6.8 years) with residual closed TBI lesions, and 2. the frequency of TBI residuals in 57 age-matched autopsy proven AD cases. In both series, ApoE was evaluated from archival paraffin-embedded brain material. RESULTS: 1. TBE series: 12.1 % showed definite and 10.3% probable AD (mean age 77.6 and 75.2 years), only 2/13 with ApoEε3/4. From 45 (77.6%) non-AD cases (mean age 78.2 years), 3 had ApoEε3/4. The prevalence of 22.4% AD in this small autopsy cohort was significantly higher than 3.3% in a recent large clinical series and 14% in the general population over age 70. 2. In the AD cohort with ApoEε4 allele frequency of 30% similar to other AD series, residuals of closed TBI were seen in 4 brains (7%) (mean age ± SD 78.2 ± 6.4), all lacking the ApoEε4 allele. TBI incidence was slightly lower than 8.5% in the clinical MIRAGE study. CONCLUSIONS: The results of this first retrospective autopsy study of TBI, ApoEε allele frequency, and AD confirm clinical studies suggesting severe TBI to be a risk factor for the development AD higher in subjects lacking ApoEε4 alleles. Further studies in larger autopsy series are needed to elucidate the relationship between TBI, genetic predisposition, and AD

    Hyperphosphorylated tau in young and middle-aged subjects

    Get PDF
    The brain tissue obtained from ninety-five cognitively unimpaired subjects, with ages ranging from 22 to 50 years upon death, were immunohistochemically assessed for neurodegenerative changes, i.e., hyperphosphorylated tau (HPτ) and β-amyloid (Aβ) pathology in predilection neuroanatomical areas. HPτ pathology was observed in the transentorhinal cortex and/or the locus coeruleus (LC) in 33% of the subjects, without any obvious risk factors known to alter the microtubule-associated protein. HPτ pathology was noted in the LC in 25 out of 83 subjects (30%), lacking concomitant cortical Aβ or transentorhinal HPτ pathology. This observation was present even when assessing only one routine section of 7 μm thickness. The recent suggestion of prion-like propagation of neurodegeneration and the finding of neurodegeneration being quite common in middle-aged persons is alarming. It is noteworthy, however, that a substantial number of neurologically unimpaired subjects even at a very old age display only sparse to modest extent of neurodegenerative pathology. Thus, only a subset of subjects with neurodegenerative changes early in life seem to progress to a symptomatic disease with ageing. This observation brings forth the notion that other, yet unknown modifying factors influence the progression of degeneration that leads to a symptomatic disorder. The known association between alterations in the LC and mood disorders, and the finding of the LC being frequently affected with HPτ pathology suggest that clinicopathological studies on young subjects both with or without mood disorders are warranted

    Vitamin D3 Supplementation in Overweight/Obese Pregnant Women:No Effects on the Maternal or Fetal Lipid Profile and Body Fat Distribution—A Secondary Analysis of the Multicentric, Randomized, Controlled Vitamin D and Lifestyle for Gestational Diabetes Prevention Trial (DALI)

    Get PDF
    Vitamin D deficiency is a common finding in overweight/obese pregnant women and is associated with increased risk for adverse pregnancy outcome. Both maternal vitamin D deficiency and maternal obesity contribute to metabolic derangements in pregnancy. We aimed to assess the effects of vitamin D3 supplementation in pregnancy versus placebo on maternal and fetal lipids. Main inclusion criteria were: women &lt;20 weeks’ gestation, BMI ≥ 29 kg/m2. Eligible women (n = 154) were randomized to receive vitamin D3 (1600 IU/day) or placebo. Assessments were performed &lt;20, 24–28 and 35–37 weeks and at birth. Linear regression models were used to assess effects of vitamin D on maternal and cord blood lipids. In the vitamin D group significantly higher total 25-OHD and 25-OHD3 levels were found in maternal and cord blood compared with placebo. Adjusted regression models did not reveal any differences in triglycerides, LDL-C, HDL-C, free fatty acids, ketone bodies or leptin between groups. Neonatal sum of skinfolds was comparable between the two groups, but correlated positively with cord blood 25-OH-D3 (r = 0.34, p = 0.012). Vitamin D supplementation in pregnancy increases maternal and cord blood vitamin D significantly resulting in high rates of vitamin D sufficiency. Maternal and cord blood lipid parameters were unaffected by Vitamin D3 supplementation.</p

    Magnetic resonance imaging brain atrophy assessment in primary age-related tauopathy (PART)

    Get PDF
    Alzheimer disease (AD) is a neurodegenerative disorder characterized pathologically by the accumulation of amyloid-beta (Aβ) plaques and tau neurofibrillary tangles (NFTs). Recently, primary age-related tauopathy (PART) has been described as a new anatomopathological disorder where NFTs are the main feature in the absence of neuritic plaques. However, since PART has mainly been studied in post-mortem patient brains, not much is known about the clinical or neuroimaging characteristics of PART. Here, we studied the clinical brain imaging characteristics of PART focusing on neuroanatomical vulnerability by applying a previously validated multiregion visual atrophy scale. We analysed 26 cases with confirmed PART with paired clinical magnetic resonance imaging (MRI) acquisitions. In this selected cohort we found that upon correcting for the effect of age, there is increased atrophy in the medial temporal region with increasing Braak staging (r = 0.3937, p = 0.0466). Upon controlling for Braak staging effect, predominantly two regions, anterior temporal (r = 0.3638, p = 0.0677) and medial temporal (r = 0.3836, p = 0.053), show a trend for increased atrophy with increasing age. Moreover, anterior temporal lobe atrophy was associated with decreased semantic memory/language (r = - 0.5823, p = 0.0056; and r = - 0.6371, p = 0.0019, respectively), as was medial temporal lobe atrophy (r = - 0.4445, p = 0.0435). Overall, these findings support that PART is associated with medial temporal lobe atrophy and predominantly affects semantic memory/language. These findings highlight that other factors associated with aging and beyond NFTs could be involved in PART pathophysiology.NACC database is funded by NIA/NIH Grant U01 AG016976. NACC data are contributed by the NIA-funded ADCs: P30 AG019610 (PI Eric Reiman, MD), P30 AG013846 (PI Neil Kowall, MD), P30 AG062428–01 (PI James Leverenz, MD) P50 AG008702 (PI Scott Small, MD), P50 AG025688 (PI Allan Levey, MD, PhD), P50 AG047266 (PI Todd Golde, MD, PhD), P30 AG010133 (PI Andrew Saykin, PsyD), P50 AG005146 (PI Marilyn Albert, PhD), P30 AG062421–01 (PI Bradley Hyman, MD, PhD), P30 AG062422–01 (PI Ronald Petersen, MD, PhD), P50 AG005138 (PI Mary Sano, PhD), P30 AG008051 (PI Thomas Wisniewski, MD), P30 AG013854 (PI Robert Vassar, PhD), P30 AG008017 (PI Jeffrey Kaye, MD), P30 AG010161 (PI David Bennett, MD), P50 AG047366 (PI Victor Henderson, MD, MS), P30 AG010129 (PI Charles DeCarli, MD), P50 AG016573 (PI Frank LaFerla, PhD), P30 AG062429–01(PI James Brewer, MD, PhD), P50 AG023501 (PI Bruce Miller, MD), P30 AG035982 (PI Russell Swerdlow, MD), P30 AG028383 (PI Linda Van Eldik, PhD), P30 AG053760 (PI Henry Paulson, MD, PhD), P30 AG010124 (PI John Trojanowski, MD, PhD), P50 AG005133 (PI Oscar Lopez, MD), P50 AG005142 (PI Helena Chui, MD), P30 AG012300 (PI Roger Rosenberg, MD), P30 AG049638 (PI Suzanne Craft, PhD), P50 AG005136 (PI Thomas Grabowski, MD), P30 AG062715–01 (PI Sanjay Asthana, MD, FRCP), P50 AG005681 (PI John Morris, MD), P50 AG047270 (PI Stephen Strittmatter, MD, PhD). NIH grants to JFC (R01AG054008, R01NS095252, R01AG062348, RF1AG060961), the Tau Consortium, and Alzheimer’s Association (NIRG- 469 15-363188

    Intraneuronal Aβ immunoreactivity is not a predictor of brain amyloidosis-β or neurofibrillary degeneration

    Get PDF
    Amyloid β (Aβ) immunoreactivity in neurons was examined in brains of 32 control subjects, 31 people with Down syndrome, and 36 patients with sporadic Alzheimer’s disease to determine if intraneuronal Aβ immunoreactivity is an early manifestation of Alzheimer-type pathology leading to fibrillar plaque formation and/or neurofibrillary degeneration. The appearance of Aβ immunoreactivity in neurons in infants and stable neuron-type specific Aβ immunoreactivity in a majority of brain structures during late childhood, adulthood, and normal aging does not support this hypothesis. The absence or detection of only traces of reaction with antibodies against 4–13 aa and 8–17 aa of Aβ in neurons indicated that intraneuronal Aβ was mainly a product of α- and γ-secretases (Aβ(17–40/42)). The presence of N-terminally truncated Aβ(17–40) and Aβ(17–42) in the control brains was confirmed by Western blotting and the identity of Aβ(17–40) was confirmed by mass spectrometry. The prevalence of products of α- and γ -secretases in neurons and β- and γ-secretases in plaques argues against major contribution of Aβ-immunopositive material detected in neuronal soma to amyloid deposit in plaques. The strongest intraneuronal Aβ(17–42) immunoreactivity was observed in structures with low susceptibility to fibrillar Aβ deposition, neurofibrillary degeneration, and neuronal loss compared to areas more vulnerable to Alzheimer-type pathology. These observations indicate that the intraneuronal Aβ immunoreactivity detected in this study is not a predictor of brain amyloidosis or neurofibrillary degeneration. The constant level of Aβ immunoreactivity in structures free from neuronal pathology during essentially the entire life span suggests that intraneuronal amino-terminally truncated Aβ represents a product of normal neuronal metabolism

    Association Study with 77 SNPs Confirms the Robust Role for the rs10830963/G of MTNR1B Variant and Identifies Two Novel Associations in Gestational Diabetes Mellitus Development

    Get PDF
    CONTEXT: Genetic variation in human maternal DNA contributes to the susceptibility for development of gestational diabetes mellitus (GDM). OBJECTIVE: We assessed 77 maternal single nucleotide gene polymorphisms (SNPs) for associations with GDM or plasma glucose levels at OGTT in pregnancy. METHODS: 960 pregnant women (after dropouts 820: case/control: m99'WHO: 303/517, IADPSG: 287/533) were enrolled in two countries into this case-control study. After genomic DNA isolation the 820 samples were collected in a GDM biobank and assessed using KASP (LGC Genomics) genotyping assay. Logistic regression risk models were used to calculate ORs according to IADPSG/m'99WHO criteria based on standard OGTT values. RESULTS: The most important risk alleles associated with GDM were rs10830963/G of MTNR1B (OR = 1.84/1.64 [IADPSG/m'99WHO], p = 0.0007/0.006), rs7754840/C (OR = 1.51/NS, p = 0.016) of CDKAL1 and rs1799884/T (OR = 1.4/1.56, p = 0.04/0.006) of GCK. The rs13266634/T (SLC30A8, OR = 0.74/0.71, p = 0.05/0.02) and rs7578326/G (LOC646736/IRS1, OR = 0.62/0.60, p = 0.001/0.006) variants were associated with lower risk to develop GDM. Carrying a minor allele of rs10830963 (MTNR1B); rs7903146 (TCF7L2); rs1799884 (GCK) SNPs were associated with increased plasma glucose levels at routine OGTT. CONCLUSIONS: We confirmed the robust association of MTNR1B rs10830963/G variant with GDM binary and glycemic traits in this Caucasian case-control study. As novel associations we report the minor, G allele of the rs7578326 SNP in the LOC646736/IRS1 region as a significant and the rs13266634/T SNP (SLC30A8) as a suggestive protective variant against GDM development. Genetic susceptibility appears to be more preponderant in individuals who meet both the modified 99'WHO and the IADPSG GDM diagnostic criteria

    Tau Structures

    Get PDF
    Tau is a microtubule-associated protein that plays an important role in axonal stabilization, neuronal development, and neuronal polarity. In this review, we focus on the primary, secondary, tertiary, and quaternary tau structures. We describe the structure of tau from its specific residues until its conformation in dimers, oligomers, and larger polymers in physiological and pathological situations
    corecore