
TRANSLATIONAL NEUROSCIENCES - ORIGINAL ARTICLE

Quantitative neuropathology: an update on automated
methodologies and implications for large scale cohorts

Lauren Walker1
• Kirsty E. McAleese1

• Mary Johnson1
• Ahmad A. Khundakar1

•

Daniel Erskine1
• Alan J. Thomas1

• Ian G. McKeith1
• Johannes Attems1

Received: 18 January 2017 / Accepted: 24 February 2017 / Published online: 6 March 2017

� The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract A tissue microarray (TMA) has previously been

developed for use in assessment of neurodegenerative dis-

eases. We investigated the variation of pathology loads in

semi-quantitative score categories and how pathology load

related to disease progression. Post-mortem tissue from 146

cases were used; Alzheimer’s disease (AD) (n = 36), Lewy

body disease (LBD) (n = 56), mixed AD/dementia with

Lewy bodies (n = 14) and controls (n = 40). TMA blocks

(one per case) were constructed using tissue cores from 15

brain regions including cortical and subcortical regions.

TMA tissue sections were stained for hyperphosphorylated

tau (HP-T), b amyloid and a-synuclein (asyn), and quanti-

fied using an automated image analysis system. Cases

classified as Braak stage VI displayed a wide variation in

HP-T pathology in the entorhinal cortex (interquartile range

4.13–44.03%). The interquartile range for b amyloid in

frontal cortex in cases classified as Thal phase 5 was

6.75–17.03% and for asyn in the cingulate in cases classified

as McKeith neocortical LBD was 0.04–0.58%. In AD and

control cases, HP-T load predicted the Braak stage

(p\ 0.001), b amyloid load predicted Thal phase

(p\ 0.001) and asyn load in LBD cases predicted McKeith

type of LBD (p\ 0.001). Quantitative data from TMA

assessment highlight the range in pathological load across

cases classified with ‘severe’ pathology and is beneficial to

further elucidate the heterogeneity of neurodegenerative

diseases. Quantifying pathology in multiple brain regions

may allow identification of novel clinico-pathological phe-

notypes for the improvement of intra vitam stratification of

clinical cohorts according to underlying pathologies.
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Introduction

Clinico-pathological correlative studies in dementia

research have provided significant contributions into

understanding how pathological protein aggregations in the

brain correspond to the clinical manifestation of dementia.

Seminal studies have demonstrated features of senile pla-

que accumulation and neurofibrillary tangle formation are

essential to the neuropathological diagnosis of Alzheimer’s

disease (AD) (Tomlinson et al. 1970) and more specifically

emphasizing the importance of dystrophic neurites positive

for hyperphosphorylated tau in neuritic plaques in AD

cases compared to controls (Dickson et al. 1988; Probst

et al. 1989; Arai et al. 1990). However, as patients were

historically dichotomized as AD or normally aged controls,

these studies lacked detail required to track disease pro-

gression. Later studies utilized semi-quantitative staging

systems (based on 4 and 5-tiered staging scales) for diag-

nostics, and correlated pathological load against clinical

measures of cognitive impairment (Braak and Braak 1991;

Mirra et al. 1991; McKeith et al. 1996; Braak et al. 2003),

giving further insight into the relative contribution of each

pathology to clinical phenotype.

Neurodegenerative diseases by nature can be heteroge-

neous, and not all can be classified using current diagnostic

On the occasion of Professor Kurt Jellinger’s 85th birthday for his

continuous support, inspiration and friendship!

& Lauren Walker

lauren.walker1@ncl.ac.uk

& Johannes Attems

j.attems@ncl.ac.uk

1 Institute of Neuroscience, Newcastle University, Campus for

Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK

123

J Neural Transm (2017) 124:671–683

DOI 10.1007/s00702-017-1702-2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/322323216?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s00702-017-1702-2&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00702-017-1702-2&amp;domain=pdf


criteria (Beach et al. 2009; Nelson et al. 2010), with semi-

quantitative grades masking subtle differences in patho-

logical burden. However, the recent advances in quantita-

tive automated image analysis technologies have enabled

the assessment of large scale cohorts and offers accurate

and reproducible methods that can be implemented by

researchers with varying degrees of neuropathology expe-

rience (Neltner et al. 2012; Attems et al. 2014). Using such

technologies, differences in cases that classify as having

‘severe’ pathology have been reported; Murray and col-

leagues identified three distinct clinico-pathological phe-

notypes of AD (all Braak stage[ IV), which have

subsequently been predicted intra vitam by MRI (Whitwell

et al. 2012), demonstrating direct translational impact of

quantitative neuropathological data. In cases fulfilling

neuropathological criteria for mixed dementia [AD and

limbic/neocortical (LBD)] with different clinical pheno-

types (i.e., AD or DLB), we found differences in the

pathological burden and topographical distribution of

hyperphosphorylated tau (HP-T), b amyloid and a-synu-

clein (a-syn) loads between clinical AD and DLB which

were not detected using semi-quantitative criteria (Walker

et al. 2015).

Clinico-pathological studies and in particular those that

use quantitative methodologies are very labor intensive,

which may limit the number of cases included in cohorts.

As such, current studies are either: (1) very comprehensive,

in which numerous brain regions are included but have

relatively small sample sizes (Arriagada et al. 1992;

Molano et al. 2010), (2) have a reasonable cohort size but

include fewer brain regions included in the study (McKee

et al. 1991; Kazee et al. 1993; Bartoo et al. 1997; Kovari

et al. 2003), or (3) include large cohort sizes but pathology

is assessed using neuropathological staging criteria or

semi-quantitative scales which are not as time consuming

(Jellinger 2006; Kovari et al. 2014). To address these

limitations and to tease out discreet clinico-pathological

phenotypes, it seems necessary for future studies to have

large cohorts with numerous brain regions quantitatively

assessed for multiple pathological lesions.

Tissue microarray (TMA) is a technique most com-

monly employed in tumor studies, which allows a large

number of samples from individual cases to be relocated

into a single block suitable for high throughput analysis

(Kononen et al. 1998; Bubendorf et al. 2001), and has

previously been employed to investigate white matter dis-

ease in a small sample of AD cases, highlighting its

potential use in dementia research (Sjobeck et al. 2003).

Here, we describe the application of TMA methodology to

assess 15 anatomically distinct brain regions (40 samples in

total) from any given case. In addition, we report on initial

results from 146 cases (AD, LBD, mixed AD/LBD and

controls) that have undergone TMA analysis for common

neurodegenerative pathologies and illustrate a huge varia-

tion in pathology burden, in particular those classified as

having ‘severe’ pathology by current diagnostic criteria

(Thal et al. 2002; McKeith et al. 2005; Braak et al. 2006;

Alafuzoff et al. 2008).

Materials and methods

Tissue preparation and neuropathological diagnosis

Brain tissue from 146 donors (mean age 79.91, SE

±0.72 years; male 89; female 57; AD 36; LBD (inclusive

of DLB, PDD and PD) 56; mixed AD/DLB 14 and non-

demented controls 40 (Table 1)], was obtained from

Newcastle Brain Tissue Resource (NBTR) as part of a

consecutive case series in accordance with the approval of

the joint Ethics Committee of Newcastle and North

Tyneside Health Authority and following NBTR brain

banking procedures. During life, patients underwent clini-

cal assessments including Mini-mental state examination

(MMSE) (Folstein et al. 1975) by board certified Old Age

Psychiatrists or Neurologists and clinical diagnoses were

reviewed by AJT and IGM post-mortem, blinded to neu-

ropathological diagnosis and checked against relevant

standard international clinical criteria (McKhann et al.

1984, 2011; McKeith et al. 2005; Emre et al. 2007).

At autopsy the right hemisphere, brainstem and cerebellum

were immersion fixed in 4% buffered aqueous formaldehyde

for 4–6 weeks. Following fixation, the right hemisphere was

dissected in coronal planes approximately 0.7 cm intervals

and subjected to standard macroscopic examination, and brain

regions required to determine the neuropathological diagnosis

were sub-dissected and processed through increasing con-

centrations of alcohol then chloroform to paraffin wax. Sub-

sequently, all brains underwent standard neuropathological

assessment using internationally accepted criteria including

neuritic Braak stages (Alafuzoff et al. 2008), Thal amyloid

phases (Thal et al. 2002), CERAD scores (Mirra et al. 1991),

NIA-AA scores (Montine et al. 2012) and McKeith criteria

(McKeith et al. 2005).

TMA construction

Each case was then sampled to compose a TMA block.

Areas that were sampled for the TMA were taken from

paraffin embedded (donor) blocks containing: pre-frontal

cortex [Brodmann area 9 (BA), 10/46], mid-frontal cortex,

(BA8, 9), cingulate gyrus (BA24, 32), caudate, putamen,

external globus pallidus, amygdala, insular cortex, motor

cortex (BA4), thalamus, entorhinal cortex, temporal cortex

(BA21, 22, 41/42), parietal cortex (BA22, 40) and occipital

cortex (BA17, 18, 19, 19/37) (Fig. 1).
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Fixed paraffin donor blocks were warmed for 1 h at

37 �C to aid tissue removal. 3 mm cylindrical tissue cores

were taken from predefined positions using a hand held

tissue sampler (Tissue-Tek� Quick-RayTM TMA system,

Sakura, CA, USA). The tip of the hand held punch was

inserted at the correct position through the depth of the

tissue in the donor block and removed along with the

cylindrical tissue core (Fig. 2a). Each tissue core was then

inserted into the correct ‘hole’ in a single, regular sized

pre-made recipient TMA paraffin block (4 cm 9 3 cm—

made to perfectly match the Tissue-Tek� Quick-RayTM

TMA system) in numerical order (Fig. 2b). If any donor

blocks are missing, empty ‘holes’ in recipient block were

filled with molten wax. Each of the punches was pushed

securely into the recipient block by hand and the block

incubated at 37 �C to reduce the wax–tissue interface when

sectioning.

An in-house silicone mould, made specifically to fit the

TMA recipient block, was preheated to 60 �C for 1 h and

2–4 ml of molten paraffin wax placed into the base. The

recipient TMA block was placed tissue face down onto the

molten wax and left for 5 min before a further 15 min

incubation at 37 �C to anneal (Fig. 2c). The block was

allowed to cool fully before the silicone mould was

removed and excess wax removed. TMA sections were

then cut and mounted onto glass slides (Fig. 2d) and

immunohistochemically stained for HP-T (AT8 clone,

Innogenetics, Belgium), b amyloid (4G8 clone, Covance,

UK) and a-syn (Leica, UK) as described previously

(Walker et al. 2015).

Image analysis

TMA slides were analyzed using an automated system

consisting of a Nikon Eclipse 90i microscope, DsFi1

camera and NIS Elements software v 3.0 (Nikon). Sec-

tions were placed onto the microscope in the correct ori-

entation to position tissue core 1 in the top left field of

view. To capture images of each of the 40 tissue cores on

the TMA slide, the microscope was positioned in the center

of the first tissue core at 209 magnification for guidance

and brought into focus at 1009 magnification. The co-

ordinates of this first tissue core were then mapped using a

macro designed to take large images comprised of 3 9 3

small images measuring 1.7 mm2. The microscope was

then positioned over the center of the second tissue core

and the process repeated until the positions of all 40 tissue

cores had been mapped. If any of the tissue cores were

Table 1 Patient demographics

AD LBD Mixed AD/DLB Control

Case (n) 36 56 14 40

Age at death (mean, ± SE) 83.17 (1.32) 78.1 77.57 (1.50) 80.30 (1.86)

% Female 50 25 28.6 52.5

Braak NFT stage (Braak et al. 2006) Stage 4 n = 1

Stage 5 n = 4

Stage 6 n = 31

Stage 0 n = 2

Stage 1 n = 7

Stage n = 14

Stage 3 n = 24

Stage 4 n = 9

Stage 5 n = 4

Stage 6 n = 10

Stage 0 n = 6

Stage 1 n = 8

Stage 2 n = 15

Stage 3 n = 9

Stage 4 n = 2

Thal phase (Thal et al. 2002) Phase 4 n = 4

Phase 5 n = 32

Phase 0 n = 6

Phase 1 n = 3

Phase 2 n = 1

Phase 3 n = 6

Phase 4 n = 6

Phase 5 n = 4

NA n = 30

Phase 4 n = 1

Phase 5 n = 13

Phase 0 n = 13

Phase 1 n = 10

Phase 2 n = 6

Phase 3 n = 5

Phase 4 n = 1

Phase 5 n = 3

NA n = 2

CERAD (Mirra et al. 1991) B n = 1

C n = 35

Negative n = 31

A n = 14

B n = 11

C n = 14 Negative n = 35

A n = 2

B n = 3

McKeith criteria (McKeith et al. 2005) Negative n = 36 Limbic n = 13

Neocortical n = 43

Limbic n = 1

Neocortical n = 13

Negative n = 38

Brainstem n = 1

Amygdala predominant n = 1

MMSE (Folstein et al. 1975) 8.45 (1.81) 15.85 (1.82) 12.38 (3.34) 25.84 (1.53)

AD Alzheimer’s disease, LBD Lewy body disease, n number, NFT neurofibrillary tangle, NA not available, CERAD consortium to establish a

registry for Alzheimer’s disease, MMSE mini-mental state examination
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missing or too damaged to be included in the analysis the

tissue core number was noted and this was factored into the

analysis. Once all 40 tissue cores were mapped, the

microscope was directed to the co-ordinates of the first

tissue core and the images of all tissue cores were auto-

matically taken in sequence. Regions of interest (ROI)

were applied to individual images if necessary to exclude

any white matter or abnormalities in the tissue (e.g., folded

tissue or tears). Restriction threshold was applied to capture

all immunopositive signals. The measurement of

immunopositivity and subsequent calculation of the per-

centage area covered by immunopositivity was performed

using an automated methodology. Red, Green and Blue

(RGB) thresholds that determine the pixels that are inclu-

ded in the binary layer used for measurement were stan-

dardized separately for each AT8, 4G8 and a-syn

immunopositivity and thresholds were set at a level that

was reached by immunopositive pathological structures

Fig. 1 Diagram illustrating the locations where each of the tissue

micro array (TMA) tissue cores were extracted from each diagnostic

tissue block. Tissue cores 1–4 were taken from the pre-frontal cortex,

5–8 from mid-frontal cortex, 9 and 10 from the cingulate cortex,

caudate, putamen, external globus pallidus, amygdala and insular

cortex (11–16 ? 19), 17 and 18 from motor cortex, thalamus (20),

21–25 from entorhinal cortex, 26–30 from temporal cortex, 31–35

from parietal cortex and 36–40 from occipital cortex. White circles

and black numbers represent the tissue cores with numeric label. Gray

numbers and color coding represent Brodmann areas Adapted from

(Perry and Oakley 1993)
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only (except APP; see below). RGB intensity values are

measured on a scale between 0 and 255 (see NIS elements

version 3.0, user guide, 2008, Nikon, Surrey UK) and were

set as follows; AT8: R25–170, G27–156, B11–126; 4G8:

R50–180, G20–168, B8–139, a-syn: R15–161, G7–139,

B4–133 (Fig. 3). Thereby, unspecific background staining

did not reach the threshold and was not included into the

measurement. In addition to RGB thresholds, we set a

restriction threshold for the assessment of 4G8

immunopositivity that excluded the measurement of

immunopositive signals of a size below 100 lm2; this was

necessary to ensure that physiological, cellular APP that is

stained with 4G8 antibody was not included in the mea-

surement. Of note, the exclusion of areas below 100 lm2

implies that pathological b amyloid depositions of less than

100 lm2 were not included into the measurement. How-

ever, diffuse b amyloid depositions and b amyloid plaques

are typically larger than 100 lm2 (Duyckaerts et al. 2009).

Of note, only immunoreactive neurones harboring HP-T

positive NFTs and NTs were quantified in sections stained

with AT8 antibody. Glial HP-T pathology such as for

example seen in progressive supranuclear palsy (Dickson

et al. 2007), corticobasal degeneration (Dickson et al.

2002), and aging-related tau-astrogliopathy (ARTAG)

(Kovacs et al. 2016) was identified on visual inspection and

excluded when quantifying pathology as part of TMA. In

addition, TMA punches that were devoid of b amyloid

plaques but had severe cerebral amyloid angiopathy on

4G8 stained sections were disregarded in quantitative

analysis. Percentage area of the tissue covered by

immunopositivity was subsequently calculated and for

brain regions that had more than one tissue core, mean

values were calculated.

Statistical analysis

Statistical analysis was conducted using the Statistical

Package for Social Sciences (SPSS v 22, IBM). Data was

tested for normality using Kolmogorov–Smirnov test fol-

lowed by visual inspection of variable histograms. Krus-

kal–Wallis was used to determine overall differences

between groups and a non-parametric t test (Mann–Whit-

ney U) to assess post hoc differences between individual

groups. Spearman’s correlation coefficients (two tailed)

were used to assess associations between pathology load

with pathological stages and MMSE scores. Exploratory

linear regression analyses were conducted to investigate

predictors of disease progression and cognitive decline.

Fig. 2 Schematic illustrating the production of the Tissue Microarray

(TMA) block. 3 mm cylindrical tissue cores are taken from pre-

defined positions from fixed paraffin embedded donor blocks using a

hand held tissue sampler (a). Each core is then inserted into the

correct hole in a pre-made recipient block in numerical order (b). The

completed recipient block is then placed face down in a mould

specifically made to fit the block with 2–4 ml of molten wax in the

bottom, and left to anneal (c). TMA sections are then cut at 6 lm and

mounted onto glass slides (d)
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Results

Neocortical pathology increases with disease

progression

Mean neocortical HP-T load increased significantly

(p\ 0.001) with increasing NFT Braak stage in all neo-

cortical regions (Fig. 4a), as did neocortical b amyloid

(p\ 0.001) in line with increasing Thal phases (Fig. 4b).

Although a-syn load was higher in all regions classified as

neocortical LBD compared to limbic LBD, only the

increase in temporal lobe a-syn load was significant

(p\ 0.05) (Fig. 4c). For post hoc statistics see Table 2.

Variation of pathology in ‘severe’ semi-quantitative

grades

Of the cases classified as Braak stage VI, the median HP-T

load in the entorhinal cortex was 20.96%; however, the

range of HP-T load was extensive (minimum 0.43%,

maximum 71.48% and interquartile range 4.13–44.03%)

(Fig. 5a). In cases classified as Thal phase 5 the median b

amyloid load in the frontal cortex was 11.45% (minimum

1.03%, maximum 51.03% and interquartile range

6.75–17.03%) (Fig. 5b). Cases that fulfilled McKeith cri-

teria for neocortical LBD harbored a median a-syn load of

0.2% (minimum 0.001%, maximum 1.85%, interquartile

range 0.04–0.58%) in the cingulate cortex (Fig. 5c).

Associations between pathology load with staging

criteria and cognitive decline

We investigated whether HP-T load in the entorhinal cortex

was associated with disease progression as measured by

NFT Braak stage and cognitive decline as measured by

MMSE. AD and control cases were selected to display a

full range of NFT Braak stages. HP-T load positively cor-

related with NFT Braak stage (rs = 0.714, p\ 0.01)

(Fig. 6a). In cases where MMSE scores were available

(n = 37), HP-T load negatively correlated with MMSE

score (rs = -0.420, p\ 0.01) (Fig. 6b). In AD and control

cases b amyloid load in the frontal cortex positively cor-

related with Thal phase (rs = 0.818, p\ 0.01) (Fig. 6c)

and frontal b amyloid load negatively correlated with

Fig. 3 Photomicrographs illustrating immunohistochemically stained

pathology (a–c) and the application of a standardized threshold

designed to capture all immunopositive signals to be included in the

quantitative analysis (red outline in ai–ci). Neurofibrillary tangles

(black arrow) and neuropil threads (black arrowhead) are

immunopositive for HP-T (AT8 antibody) (a) and with threshold

applied—red outline (ai). Plaques are immunopositive for b amyloid

(4G8 antibody) (b) and with the threshold applied—red outline (bi).

Intracellular amyloid precursor protein is also immunopositive using

4G8 antibody and is excluded from the quantitative analysis using a

size restriction threshold (red arrows) (bi). Lewy bodies (green

arrows) and Lewy neurites (green arrowheads) are immunopositive

for a-syn (a-syn antibody) (c) and with threshold applied—red

outline (ci). Scale bar in a represents 50 lm and is valid for all

images
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MMSE score (rs = 0.676, p\ 0.01) (Fig. 6d). Whilst in

LBD and control cases, a-syn load in the cingulate posi-

tively correlated with disease progression as measured by

McKeith criteria (rs = 0.875, p\ 0.01) (Fig. 6e). In cases

where MMSE scores were available (n = 39) a-syn load in

the cingulate negatively correlated with MMSE score

(rs = 0.690, p\ 0.01) (Fig. 6f).

Pathology load predicts disease progression

and cognitive decline

To address whether pathology load could predict disease

progression and cognitive decline as measured by MMSE, we

performed exploratory linear regression analyses in AD, LBD

and control cases. HP-T load in the entorhinal cortex predicted

both NFT Braak stage (model R2 = 0.324, F(1) = 35.423,

p\ 0.001) and MMSE score (model R2 = 0.116,

F(1) = 4.873, p\ 0.05). In AD and control cases, b amyloid

load in the frontal cortex predicted Thal phase (model

R2 = 0.421, F(1) = 48.025, p\ 0.001) and MMSE score

(model R2 = 0.413, F(1) = 25.277, p\ 0.001). Whilst in

LBD and control cases a-syn load in the cingulate predicted

disease progression as classified by McKeith criteria (model

R2 = 0.260, F(1) = 43.959, p\ 0.001) and MMSE score

(model R2 = 0.119, F(1) = 4.983, p\0.05).

Discussion

Using a TMA-based methodology, we have developed an

automated quantification technique capable of accurately

assessing multiple pathological lesions in a range of

Fig. 4 Mean neocortical hyperphosphorylated tau (HP-T), b amyloid and a-synuclein (a-syn) load significantly increases in line with

neurofibrillary tangle (NFT) Braak stages, Thal phases and McKeith criteria. For mean values and statistics, see Table 2
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neurodegenerative diseases, whilst the inclusion of 15 brain

regions, represented by a total of 40 samples, provides a

platform to study post-mortem tissue on a systems level in

the neuropathology context. Data from 146 cases currently

analyzed displayed a wide variation in pathology load in

semi-quantitative grades in particular HP-T load in cases

classified as NFT Braak VI. This is in agreement with a

previous study by Abner and colleagues, who observed an

appreciable range in neurofibrillary pathology in neocorti-

cal regions in Braak stage VI cases, with the most severely

affected cases displaying increased ante-mortem cognitive

impairment (Abner et al. 2011). Such variations in

pathology highlights the need for quantitative neu-

ropathological assessment in future clinico-pathological

studies, as Braak staging can mask severe variations in

pathology severity and may account for some of the

heterogeneity observed in neurodegenerative diseases in

addition to hindering identification of discreet novel clin-

ico-pathological phenotypes. Although the TMA method-

ology presented here allows the accurate assessment of

pathological lesions in multiple brain regions, there is an

inherent bias associated with this type of technique. It has

been previously shown that densities of pathological pro-

tein aggregates (e.g., b amyloid) differs between gyri and

sulci (Gentleman et al. 1992), and as such we have tried to

limit anatomical bias by sampling gyri and sulci of each

cortical region within the TMA block. Other brain regions

incorporated into the TMA block, such as the striatum and

Table 2 Neocortical pathology

burden of hyperphosphorylated

tau, b amyloid, and a-synuclein

and neuropathological criteria

Braak NFT stage

I/II (n = 47) III/IV (n = 42) V/VI (n = 57) Statistic*

HP-T load

Frontal % (± SE) 0.07 (0.01) 0.10 (0.02) 12.29 (2.48) p\ 0.001a

Temporal % (± SE) 0.26 (0.14) 0.60 (0.33) 20.58 (2.85) p\ 0.001b

Parietal % (± SE) 0.06 (0.02) 0.70 (0.52) 18.07 (2.90) p\ 0.001c

Occipital % (± SE) 0.04 (0.01) 0.37 (0.17) 15.04 (2.56) p\ 0.001d

Thal Ab phase

1 (n = 13) 2 (n = 7) 3 (n = 11) 4 (n = 5) 5 (n = 45) Statistic*

Ab load

Frontal % (± SE) 0.13 (0.07) 3.80 (1.80) 2.91 (0.69) 8.29 (1.20) 12.80 (1.44) p\ 0.001e

Temporal % (± SE) 0.26 (0.20) 1.94 (1.07) 3.00 (0.82) 5.97 (1.42) 10.76 (1.04) p\ 0.001f

Parietal % (± SE) 0.09 (0.44) 2.82 (1.73) 2.82 (0.91) 7.37 (1.87) 10.63 (1.08) p\ 0.001g

Occipital % (± SE) 0.17 (0.09) 1.55 (0.79) 2.27 (0.73) 4.86 (1.07) 7.02 (5.99) p\ 0.001h

McKeith criteria

Limbic (n = 7) Neocortical (n = 36) Statistic**

a-Syn load

Frontal % (± SE) 0.06 (0.04) 0.20 (0.07) ns

Temporal % (± SE) 0.04 (0.02) 0.17 (0.04) p\ 0.05

Parietal % (± SE) 0.05 (0.04) 0.16 (0.06) ns

Occipital % (± SE) 0.02 (0.01) 0.09 (0.03) ns

NFT neurofibrillary tangle, n number, HP-T hyperphosphorylated tau, SE standard error, Ab amyloid beta,

a-syn alpha-synuclein, ns not significant

* Kruskal–Wallis test, Pairwise post hoc Mann–Whitney U tests

** Mann Whitney U test
a I/II\ III/IV (p\ 0.01), I/II\V/VI and III/IV\V/VI (both p\ 0.001)
b I/II\ III/IV (p\ 0.01), I/II\V/VI and III/IV\V/VI (both p\ 0.001)
c I/II\ III/IV (p\ 0.01), I/II\V/VI and III/IV\V/VI (both p\ 0.001)
d I/II\ III/IV (p\ 0.01), I/II\V/VI and III/IV\V/VI (both p\ 0.001)
e 1\ 3, 1\ 4, 1\ 5, 3\ 5 (all p\ 0.001) and 2\ 5, 3\ 4 (p\ 0.01)
f 1\ 3, 1\ 4, 1\ 5, 2\ 5 3\ 5 (all p\ 0.001) and 4\ 5 (p\ 0.05)
g 1\ 3, 1\ 4, 1\ 5, 3\ 5 (all p\ 0.001) and 2\ 3 (p\ 0.01)
h 1\ 3, 1\ 4, 1\ 5 (all p\ 0.001), 3\ 5 (p\ 0.01) and 2\ 4 (p\ 0.05)
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thalamus, are more complex structures containing multiple

nuclei, and whilst this technique is aimed at providing an

overview of pathology present, we suggest a more com-

prehensive sampling protocol when investigating individ-

ual brain regions.

Previous studies have demonstrated that staging disease

progression using standardized criteria is the most accurate

correlate of the neurodegenerative process (Braak and

Braak 1991; Bancher et al. 1996), however, here, we have

demonstrated that HP-T, b amyloid and a-syn load in

individual brain regions increases with, and is a predictor

of increasing neuropathological stage. In addition we have

shown that HP-T, b amyloid and a-syn loads in the

entorhinal cortex, frontal cortex and cingulate cortex,

respectively, are predictors of cognitive decline as mea-

sured by MMSE, which highlights the importance of

multiple pathologies in neurodegeneration and this may

have implications for future therapeutic design strategies.

A recent study by Koss and colleagues found pre-fibrillar

soluble forms of HP-T and b amyloid are present early in

the disease course and are closely linked to disease pro-

gression and cognitive impairment (Koss et al. 2016).

Therefore, targeting pre-fibrillar forms of HP-T and b
amyloid or insoluble deposits in the early stage of disease

before considerable accumulation may be a more effective

treatment strategy. However, research into prion-like

mechanisms involved in propagation of misfolded proteins

in neurodegenerative diseases is gathering pace, with drug

development targeted at halting the cell to cell transmission

of toxic protein aggregates (for reviews see Frost and Dia-

mond 2010; Hasegawa et al. 2016). It is, therefore, essential

to address both the accumulation of pathological aggregations

in a given region at an early stage and the potential spread to

other regions when designing novel therapeutics.

The finding that pathology load in a given region is

associated with cognitive decline prompts the question

whether there is a pathological ‘threshold’ that is needed to

be breached to elicit symptoms of cognitive impairment. A

clinico-pathological study by Haroutunian and colleagues

reported no difference in HP-T load in subjects with

‘questionable dementia’ (CDR 0.5) and control subjects

(CDR 0) (Haroutunian et al. 1999). However, the study

utilized a semi-quantitative scoring system, which may not

have been sensitive enough to detect subtle differences in

pathology. Future studies using a high throughput quanti-

tative methodology, such as presented here, may reveal a

saturation point at which cognitive symptoms are clinically

observed.

Although clinico-pathological studies have been para-

mount to research into neurodegenerative dementias, data

from previous studies may be biased as they may have

assessed hallmark pathologies of one neurodegenerative

disease category only. It is apparent that neuropathological

lesions associated with neurodegenerative dementias are

not exclusive to single diseases (Jellinger 2007; Attems and

Jellinger 2013) and co-existing pathologies confer a worse

prognosis (Olichney et al. 1998; Serby et al. 2003; Kraybill

et al. 2005), therefore the presence of co-morbid patholo-

gies needs to be taken into account when conducting large

scale studies. A recent large scale clinico-pathological

correlative study by Irwin and colleagues investigated the

Fig. 5 Cases classified as having ‘severe’ pathology display a large

variation in pathology load. a Hyperphosphorylated tau (HP-T) load in

the entorhinal cortex in cases classified as neuritic Braak stage VI. b b
amyloid load in the frontal cortex in cases classified as Thal phase 5

and c a-Synuclein (a-syn) load in the cingulate cortex in Lewy body

disease (LBD) cases that are classified as McKeith neocortical LBD
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effect of concomitant pathologies in a post-mortem cohort

of cases with synucleinopathies. They report an increased

severity of Lewy body pathology in addition to AD

pathology (in particular HP-T pathology) resulted in a

shorter survival time and a shorter interval between motor

symptoms to the onset of dementia (Irwin et al. 2017).
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They also suggest that future cohorts are stratified by their

level of AD pathology in clinical trials for promising

therapeutics targeting HP-T, b amyloid and a-syn. Our

TMA methodology provides the appropriate platform to

address the issues of co-morbid pathologies in neurode-

generative diseases, as it allows serial sections to be stained

for multiple pathological lesions in a considerably shorter

time frame than traditional quantification techniques using

whole tissue sections. The construction of the TMA block

and subsequent sectioning and staining can be completed in

a day, whilst the quantification of each individually stained

TMA slides can be completed in an hour, making TMA a

reliable high throughput system. Assessment of neu-

ropathological lesions can be reliably conducted by neu-

ropathologists with a wealth of experience, such as

Professor Kurt Jellinger (Paulus et al. 1992; Bancher et al.

1997). However, quantification techniques such as the one

described in this study will allow researchers with con-

siderably less experience to assess pathology loads in

neurodegenerative diseases under the supervision of an

experienced neuropathologist or researcher with an exper-

tise in the human neuropathology of neurodegeneration.

The purpose of this quantitative TMA technique is not to

replace, but to complement diagnostic procedures, and add

value to human post-mortem tissue donated to brain banks

for research purposes. Data generated by this technique can

be incorporated into multivariate models used for clinico-

pathological studies.
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