103 research outputs found

    When is a hydrological model sufficiently calibrated to depict flow preferences of riverine species?

    Get PDF
    Riverine species have adapted to their environment, particularly to the hydrological regime. Hydrological models and the knowledge of species preferences are used to predict the impact of hydrological changes on species. Inevitably, hydrological model performance impacts how species are simulated. From the example of macroinvertebrates in a lowland and a mountainous catchment, we investigate the impact of hydrological model performance and the choice of the objective function based on a set of 36 performance metrics for predicting species occurrences. Besides species abundance, we use the simulated community structure for an ecological assessment as applied for the Water Framework Directive. We investigate when a hydrological model is sufficiently calibrated to depict species abundance. For this, we postulate that performance is not sufficient when ecological assessments based on the simulated hydrology are significantly different (analysis of variance, p < .05) from the ecological assessments based on observations. The investigated range of hydrological model performance leads to considerable variability in species abundance in the two catchments. In the mountainous catchment, links between objective functions and the ecological assessment reveal a stronger dependency of the species on the discharge regime. In the lowland catchment, multiple stressors seem to mask the dependence of the species on discharge. The most suitable objective functions to calibrate the model for species assessments are the ones that incorporate hydrological indicators used for the species prediction

    Modelling of riverine ecosystems by integrating models: conceptual approach, a case study and research agenda

    Get PDF
    Aim Highly complex interactions between the hydrosphere and biosphere, as well as multifactorial relationships, characterize the interconnecting role of streams and rivers between different elements of a landscape. Applying species distribution models (SDMs) in these ecosystems requires special attention because rivers are linear systems and their abiotic and biotic conditions are structured in a linear fashion with significant influences from upstream/downstream or lateral influences from adjacent areas. Our aim was to develop a modelling framework for benthic invertebrates in riverine ecosystems and to test our approach in a data-rich study catchment. Location We present a case study of a 9-km section of the lowland Kielstau River located in northern Germany. Methods We linked hydrological, hydraulic and species distribution models to predict the habitat suitability for the bivalve Sphaerium corneum in a riverine system. The results generated by the hydrological model served as inputs into the hydraulic model, which was used to simulate the resulting water levels, velocities and sediment discharge within the stream channel. Results The ensemble model obtained good evaluation scores (area under the receiver operating characteristic curve 0.96; kappa 0.86; true skill statistic 0.95; sensitivity 86.14; specificity 85.75). Mean values for variables at the sampling sites were not significantly different from the values at the predicted distribution (MannWhitney U-test P &gt; 0.05). High occurrence probabilities were predicted in the downstream half of the 9-km section of the Kielstau. The most important variable for the model was sediment discharge (contributing 40%), followed by water depth (30%), flow velocity (19%) and stream power (11%). Main conclusions The hydrological and hydraulic models are able to produce predictors, acting at different spatial scales, which are known to influence riverine organisms; which, in turn, are used by the SDMs as input. Our case study yielded good results, which corresponded well with ecological knowledge about our study organism. Although this method is feasible for making projections of habitat suitability on a local scale (here: a reach in a small catchment), we discuss remaining challenges for future modelling approaches and large-scale applications.Aim Highly complex interactions between the hydrosphere and biosphere, as well as multifactorial relationships, characterize the interconnecting role of streams and rivers between different elements of a landscape. Applying species distribution models (SDMs) in these ecosystems requires special attention because rivers are linear systems and their abiotic and biotic conditions are structured in a linear fashion with significant influences from upstream/downstream or lateral influences from adjacent areas. Our aim was to develop a modelling framework for benthic invertebrates in riverine ecosystems and to test our approach in a data-rich study catchment. Location We present a case study of a 9-km section of the lowland Kielstau River located in northern Germany. Methods We linked hydrological, hydraulic and species distribution models to predict the habitat suitability for the bivalve Sphaerium corneum in a riverine system. The results generated by the hydrological model served as inputs into the hydraulic model, which was used to simulate the resulting water levels, velocities and sediment discharge within the stream channel. Results The ensemble model obtained good evaluation scores (area under the receiver operating characteristic curve 0.96; kappa 0.86; true skill statistic 0.95; sensitivity 86.14; specificity 85.75). Mean values for variables at the sampling sites were not significantly different from the values at the predicted distribution (MannWhitney U-test P > 0.05). High occurrence probabilities were predicted in the downstream half of the 9-km section of the Kielstau. The most important variable for the model was sediment discharge (contributing 40%), followed by water depth (30%), flow velocity (19%) and stream power (11%). Main conclusions The hydrological and hydraulic models are able to produce predictors, acting at different spatial scales, which are known to influence riverine organisms; which, in turn, are used by the SDMs as input. Our case study yielded good results, which corresponded well with ecological knowledge about our study organism. Although this method is feasible for making projections of habitat suitability on a local scale (here: a reach in a small catchment), we discuss remaining challenges for future modelling approaches and large-scale applications

    Land use change impacts on floods at the catchment scale: Challenges and opportunities for future research

    Get PDF
    Research gaps in understanding flood changes at the catchment scale caused by changes in forest management, agricultural practices, artificial drainage and terracing are identified. Potential strategies in addressing these gaps are proposed, such as complex systems approaches to link processes across time scales, long-term experiments on physical-chemical-biological process interactions, and a focus on connectivity and patterns across spatial scales. It is suggested that these strategies will stimulate new research that coherently addresses the issues across hydrology, soil and agricultural sciences, forest engineering, forest ecology and geomorphology

    Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients

    Get PDF

    Artérite digitale précédant la découverte d’un lymphome malin B

    No full text
    International audienc

    Streamflow-based evaluation of climate model sub-selection methods

    No full text
    The assessment of climate change and its impact relies on the ensemble of models available and/or sub-selected. However, an assessment of the validity of simulated climate change impacts is not straightforward because historical data is commonly used for bias-adjustment, to select ensemble members or to define a baseline against which impacts are compared—and, naturally, there are no observations to evaluate future projections. We hypothesize that historical streamflow observations contain valuable information to investigate practices for the selection of model ensembles. The Danube River at Vienna is used as a case study, with EURO-CORDEX climate simulations driving the COSERO hydrological model. For each selection method, we compare observed to simulated streamflow shift from the reference period (1960–1989) to the evaluation period (1990–2014). Comparison against no selection shows that an informed selection of ensemble members improves the quantification of climate change impacts. However, the selection method matters, with model selection based on hindcasted climate or streamflow alone is misleading, while methods that maintain the diversity and information content of the full ensemble are favorable. Prior to carrying out climate impact assessments, we propose splitting the long-term historical data and using it to test climate model performance, sub-selection methods, and their agreement in reproducing the indicator of interest, which further provide the expectable benchmark of near- and far-future impact assessments. This test is well-suited to be applied in multi-basin experiments to obtain better understanding of uncertainty propagation and more universal recommendations regarding uncertainty reduction in hydrological impact studies.Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347European Commission http://dx.doi.org/10.13039/50110000078
    corecore