8 research outputs found

    Quantifying the roles of host movement and vector dispersal in the transmission of vector-borne diseases of livestock

    Get PDF
    The role of host movement in the spread of vector-borne diseases of livestock has been little studied. Here we develop a mathematical framework that allows us to disentangle and quantify the roles of vector dispersal and livestock movement in transmission between farms. We apply this framework to outbreaks of bluetongue virus (BTV) and Schmallenberg virus (SBV) in Great Britain, both of which are spread by Culicoides biting midges and have recently emerged in northern Europe. For BTV we estimate parameters by fitting the model to outbreak data using approximate Bayesian computation, while for SBV we use previously derived estimates. We find that around 90% of transmission of BTV between farms is a result of vector dispersal, while for SBV this proportion is 98%. This difference is a consequence of higher vector competence and shorter duration of viraemia for SBV compared with BTV. For both viruses we estimate that the mean number of secondary infections per infected farm is greater than one for vector dispersal, but below one for livestock movements. Although livestock movements account for a small proportion of transmission and cannot sustain an outbreak on their own, they play an important role in establishing new foci of infection. However, the impact of restricting livestock movements on the spread of both viruses depends critically on assumptions made about the distances over which vector dispersal occurs. If vector dispersal occurs primarily at a local scale (99% of transmission occurs <25 km), movement restrictions are predicted to be effective at reducing spread, but if dispersal occurs frequently over longer distances (99% of transmission occurs <50 km) they are not

    High prevalence of epilepsy in onchocerciasis endemic regions in the Democratic Republic of the Congo

    Get PDF
    Background: An increased prevalence of epilepsy has been reported in many onchocerciasis endemic areas. The objective of this study was to determine the prevalence of epilepsy in onchocerciasis endemic areas in the Democratic Republic of the Congo (DRC) and investigate whether a higher annual intake of Ivermectin was associated with a lower prevalence of epilepsy. Methodology/Principle findings: Between July 2014 and February 2016, house-to-house epilepsy prevalence surveys were carried out in areas with a high level of onchocerciasis endemicity: 3 localities in the Bas-Uele, 24 in the Tshopo and 21 in the Ituri province. Ivermectin uptake was recorded for every household member. This database allowed a matched case-control pair subset to be created that enabled putative risk factors for epilepsy to be tested using univariate logistic regression models. Risk factors relating to onchocerciasis were tested using a multivariate random effects model. To identify presence of clusters of epilepsy cases, the Kulldorff's scan statistic was used. Of 12, 408 people examined in the different health areas 407 (3.3%) were found to have a history of epilepsy. A high prevalence of epilepsy was observed in health areas in the 3 provinces: 6.8–8.5% in Bas-Uele, 0.8–7.4% in Tshopo and 3.6–6.2% in Ituri. Median age of epilepsy onset was 9 years, and the modal age 12 years. The case control analysis demonstrated that before the appearance of epilepsy, compared to the same life period in controls, persons with epilepsy were around two times less likely (OR: 0.52; 95%CI: (0.28, 0.98)) to have taken Ivermectin than controls. After the appearance of epilepsy, there was no difference of Ivermectin intake between cases and controls. Only in Ituri, a significant cluster (p-value = 0.0001) was identified located around the Draju sample site area. Conclusions: The prevalence of epilepsy in health areas in onchocerciasis endemic regions in the DRC was 2–10 times higher than in non-onchocerciasis endemic regions in Africa. Our data suggests that Ivermectin protects against epilepsy in an onchocerciasis endemic region. However, a prospective population based intervention study is needed to confirm this

    Advances in research on the prenatal development of skeletal muscle in animals in relation to the quality of muscle-based food. I. Regulation of myogenesis and environmental impact

    Get PDF
    Skeletal muscle development in vertebrates – also termed myogenesis – is a highly integrated process. Evidence to date indicates that the processes are very similar across mammals, poultry and fish, although the timings of the various steps differ considerably. Myogenesis is regulated by the myogenic regulatory factors and consists of two to three distinct phases when different fibre populations appear. The critical times when myogenesis is prone to hormonal or environmental influences depend largely on the developmental stage. One of the main mechanisms for both genetic and environmental effects on muscle fibre development is via the direct action of the growth hormone–insulin-like growth factor (GH–IGF) axis. In mammals and poultry, postnatal growth and function of muscles relate mainly to the hypertrophy of the fibres formed during myogenesis and to their fibre-type composition in terms of metabolic and contractile properties, whereas in fish hyperplasia still plays a major role. Candidate genes that are important in skeletal muscle development, for instance, encode for IGFs and IGF-binding proteins, myosin heavy chain isoforms, troponin T, myosin light chain and others have been identified. In mammals, nutritional supply in utero affects myogenesis and the GH–IGF axis may have an indirect action through the partitioning of nutrients towards the gravid uterus. Impaired myogenesis resulting in low skeletal myofibre numbers is considered one of the main reasons for negative long-term consequences of intrauterine growth retardation. Severe undernutrition in utero due to natural variation in litter or twin-bearing species or insufficient maternal nutrient supply may impair myogenesis and adversely affect carcass quality later in terms of reduced lean and increased fat deposition in the progeny. On the other hand, increases in maternal feed intake above standard requirement seem to have no beneficial effects on the growth of the progeny with myogenesis not or only slightly affected. Initial studies on low and high maternal protein feeding are published. Although there are only a few studies, first results also reveal an influence of nutrition on skeletal muscle development in fish and poultry. Finally, environmental temperature has been identified as a critical factor for growth and development of skeletal muscle in both fish and poultry.COST action 92
    corecore