25 research outputs found

    Gene family structure, expression and functional analysis of HD-Zip III genes in angiosperm and gymnosperm forest trees

    Get PDF
    BACKGROUND: Class III Homeodomain Leucine Zipper (HD-Zip III) proteins have been implicated in the regulation of cambium identity, as well as primary and secondary vascular differentiation and patterning in herbaceous plants. They have been proposed to regulate wood formation but relatively little evidence is available to validate such a role. We characterised and compared HD-Zip III gene family in an angiosperm tree, Populus spp. (poplar), and the gymnosperm Picea glauca (white spruce), representing two highly evolutionarily divergent groups. RESULTS: Full-length cDNA sequences were isolated from poplar and white spruce. Phylogenetic reconstruction indicated that some of the gymnosperm sequences were derived from lineages that diverged earlier than angiosperm sequences, and seem to have been lost in angiosperm lineages. Transcript accumulation profiles were assessed by RT-qPCR on tissue panels from both species and in poplar trees in response to an inhibitor of polar auxin transport. The overall transcript profiles HD-Zip III complexes in white spruce and poplar exhibited substantial differences, reflecting their evolutionary history. Furthermore, two poplar sequences homologous to HD-Zip III genes involved in xylem development in Arabidopsis and Zinnia were over-expressed in poplar plants. PtaHB1 over-expression produced noticeable effects on petiole and primary shoot fibre development, suggesting that PtaHB1 is involved in primary xylem development. We also obtained evidence indicating that expression of PtaHB1 affected the transcriptome by altering the accumulation of 48 distinct transcripts, many of which are predicted to be involved in growth and cell wall synthesis. Most of them were down-regulated, as was the case for several of the poplar HD-Zip III sequences. No visible physiological effect of over-expression was observed on PtaHB7 transgenic trees, suggesting that PtaHB1 and PtaHB7 likely have distinct roles in tree development, which is in agreement with the functions that have been assigned to close homologs in herbaceous plants. CONCLUSIONS: This study provides an overview of HD-zip III genes related to woody plant development and identifies sequences putatively involved in secondary vascular growth in angiosperms and in gymnosperms. These gene sequences are candidate regulators of wood formation and could be a source of molecular markers for tree breeding related to wood properties

    The SLUGGS Survey: kinematics for over 2500 globular clusters in twelve early-type galaxies

    Get PDF
    We present a spectrophotometric survey of 2522 extragalactic globular clusters (GCs) around 12 early-type galaxies, nine of which have not been published previously. Combining space-based and multicolour wide-field ground-based imaging, with spectra from the Keck/DEep Imaging Multi-Object Spectrograph (DEIMOS) instrument, we obtain an average of 160 GC radial velocities per galaxy, with a high-velocity precision of ∼15 km s−1 per GC. After studying the photometric properties of the GC systems, such as their spatial and colour distributions, we focus on the kinematics of metal-poor (blue) and metal-rich (red) GC subpopulations to an average distance of ∼8 effective radii from the galaxy centre. Our results show that for some systems the bimodality in GC colour is also present in GC kinematics. The kinematics of the red GC subpopulations are strongly coupled with the host galaxy stellar kinematics. The blue GC subpopulations are more dominated by random motions, especially in the outer regions, and decoupled from the red GCs. Peculiar GC kinematic profiles are seen in some galaxies: the blue GCs in NGC 821 rotate along the galaxy minor axis, whereas the GC system of the lenticular galaxy NGC 7457 appears to be strongly rotation supported in the outer region. We supplement our galaxy sample with data from the literature and carry out a number of tests to study the kinematic differences between the two GC subpopulations. We confirm that the GC kinematics are coupled with the host galaxy properties and find that the velocity kurtosis and the slope of their velocity dispersion profiles are different between the two GC subpopulations in more massive galaxies

    Disruption of AP1S1, Causing a Novel Neurocutaneous Syndrome, Perturbs Development of the Skin and Spinal Cord

    Get PDF
    Adaptor protein (AP) complexes regulate clathrin-coated vesicle assembly, protein cargo sorting, and vesicular trafficking between organelles in eukaryotic cells. Because disruption of the various subunits of the AP complexes is embryonic lethal in the majority of cases, characterization of their function in vivo is still lacking. Here, we describe the first mutation in the human AP1S1 gene, encoding the small subunit σ1A of the AP-1 complex. This founder splice mutation, which leads to a premature stop codon, was found in four families with a unique syndrome characterized by mental retardation, enteropathy, deafness, peripheral neuropathy, ichthyosis, and keratodermia (MEDNIK). To validate the pathogenic effect of the mutation, we knocked down Ap1s1 expression in zebrafish using selective antisens morpholino oligonucleotides (AMO). The knockdown phenotype consisted of perturbation in skin formation, reduced pigmentation, and severe motility deficits due to impaired neural network development. Both neural and skin defects were rescued by co-injection of AMO with wild-type (WT) human AP1S1 mRNA, but not by co-injecting the truncated form of AP1S1, consistent with a loss-of-function effect of this mutation. Together, these results confirm AP1S1 as the gene responsible for MEDNIK syndrome and demonstrate a critical role of AP1S1 in development of the skin and spinal cord

    Effects of eight neuropsychiatric copy number variants on human brain structure

    Get PDF
    Many copy number variants (CNVs) confer risk for the same range of neurodevelopmental symptoms and psychiatric conditions including autism and schizophrenia. Yet, to date neuroimaging studies have typically been carried out one mutation at a time, showing that CNVs have large effects on brain anatomy. Here, we aimed to characterize and quantify the distinct brain morphometry effects and latent dimensions across 8 neuropsychiatric CNVs. We analyzed T1-weighted MRI data from clinically and non-clinically ascertained CNV carriers (deletion/duplication) at the 1q21.1 (n = 39/28), 16p11.2 (n = 87/78), 22q11.2 (n = 75/30), and 15q11.2 (n = 72/76) loci as well as 1296 non-carriers (controls). Case-control contrasts of all examined genomic loci demonstrated effects on brain anatomy, with deletions and duplications showing mirror effects at the global and regional levels. Although CNVs mainly showed distinct brain patterns, principal component analysis (PCA) loaded subsets of CNVs on two latent brain dimensions, which explained 32 and 29% of the variance of the 8 Cohen’s d maps. The cingulate gyrus, insula, supplementary motor cortex, and cerebellum were identified by PCA and multi-view pattern learning as top regions contributing to latent dimension shared across subsets of CNVs. The large proportion of distinct CNV effects on brain morphology may explain the small neuroimaging effect sizes reported in polygenic psychiatric conditions. Nevertheless, latent gene brain morphology dimensions will help subgroup the rapidly expanding landscape of neuropsychiatric variants and dissect the heterogeneity of idiopathic conditions

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Data from: In absence of local adaptation, plasticity and spatially varying selection rule: a view from genomic reaction norms in a panmictic species (Anguilla rostrata)

    No full text
    Background: American eel (Anguilla rostrata) is one of the few species for which panmixia has been demonstrated at the scale of the entire species. As such, the development of long term local adaptation is impossible in this species. Instead, both plasticity and spatially varying selection have been invoked in explaining how American eel may cope with an unusual broad scope of environmental conditions. Here, we address this question through transcriptomic analyses and genomic reaction norms of eels from two geographic origins reared in controlled environments. Results: The null hypothesis of no difference of gene expression between eels from the two origins was rejected. Many unique transcripts and two out of seven gene clusters showed significant difference in expression, both at time of capture and after three months of common rearing. Differences in expression were observed at numerous genes representing many functional groups when comparing eels from a same origin reared in different salinity conditions. Plastic response to different rearing conditions varied among gene clusters with three clusters showing significant origin-environment interactions translating differential genomic norms of reaction. Most genes and functional categories showing differences between origins were previously shown to be differentially expressed in a study comparing transcription profiles between adult European eels acclimated to different salinities. Conclusions: These results emphasize that while plasticity in expression may be important, there is also a role for local genetic (and/or epigenetic) differences in explaining the extent of differences in gene expression between eels from different geographic origins. Such differences match those reported in genetically distinct populations in other fishes, both in terms of proportion of genes that are differentially expressed and the diversity of biological functions being involved. We thus propose that genetic differences between glass eels of different origins caused by spatially varying selection due to local environmental conditions translates into transcriptomic differences (including different genomic norms of reaction) which may in turn explain part of the phenotypic variance observed between different habitats colonized by eels

    Data from: Population genetics of the American eel (Anguilla rostrata): FST = 0 and NAO effects on demographic fluctuations of a panmictic species

    No full text
    We performed population genetic analyses on the American eel (Anguilla rostrata) with three main objectives. First, we conducted the most comprehensive analysis of neutral genetic population structure to date in order to revisit the null hypothesis of panmixia in this species. Second, we used this data to provide the first estimates of contemporary effective population size (Ne) and to document temporal variation in effective number of breeders (Nb) in American eel. Third, we tested for statistical associations between temporal variation in the North Atlantic Oscillation (NAO) index, the effective number of breeders and two indices of recruit abundance. A total of 2142 eels from 32 sampling locations were genotyped with 18 microsatellite loci. All measures of differentiation were essentially zero, and no evidence for significant spatial or temporal genetic differentiation was found. The panmixia hypothesis should thus be accepted for this species. Nb estimates varied by a factor of 23 among 12 cohorts, from 473 to 10 999. The effective population size Ne was estimated to be around 22 382. This study also showed that genetically based demographic indices, namely Nb and allelic richness (Ar), can be used as surrogates for the abundance of breeders and recruits, which were both shown to be positively influenced by variation during high (positive) NAO phases. Thus, long-term genetic monitoring of American glass eels at several sites along the North American Atlantic coast would represent a powerful and efficient complement to census monitoring to track demographic fluctuations and better understand their causes

    Regional variation of gene regulation associated with storage lipid metabolism in American glass eels (Anguilla rostrata)

    Get PDF
    Variation in gene regulation may be involved in the differences observed for life history traits within species. American eel (Anguilla rostrata) is well known to harbor distinct ecotypes within a single panmictic population. We examined the expression of genes involved in the regulation of appetite as well as lipid and glycogen among glass eels migrating to different locations on the Canadian east coast and captured at two different periods of upstream migration. Gene expression levels of three reference and five candidate genes were analyzed by real-time PCR with Taqman probes in recently captured wild glass eels. All gene transcripts were detected in glass eels. Of the five candidate genes, bile salt activated and triacylglycerol lipases were respectively 7.65 and 3.25 times more expressed in glass eels from the St. Lawrence estuary than in those from Nova Scotia, and there was no effect related to the two-week difference in capture date. These two genes explained 82.41% of the dissimilarity between the two rivers. In contrast, glycogen phosphorylase, ghrelin, and leptin receptor genes showed no significant differences in gene transcription. These results confirmed at the molecular level an observation that was recently made at the phenotypic level that glass eels from the St. Lawrence estuary have a greater capacity to use lipid reserves to sustain their metabolic needs. These observations add to the body of evidence supporting the hypothesis that regional phenotypic variation observed in American eel is determined early in life and that part of this variation is likely under genetic control. -- Keywords : Ecotypes ; Ghrelin ; Glycogen phosphorylase ; Leptin receptor ; Lipase ; mRNA expression ; Transcriptomics
    corecore