133 research outputs found

    Pseudoknots: RNA Structures with Diverse Functions

    Get PDF
    Just as proteins form distinct structural motifs, certain structures are commonly adopted by RNA molecules. Amongst the most prevalent is the RNA pseudoknot

    Conformational Flexibility in the Enterovirus RNA Replication Platform

    Get PDF
    A presumed RNA cloverleaf (5′CL), located at the 5′-most end of the noncoding region of the enterovirus genome, is the primary established site for initiation of genomic replication. Stem–loop B (SLB) and stem–loop D (SLD), the two largest stem–loops within the 5′CL, serve as recognition sites for protein interactions that are essential for replication. Here we present the solution structure of rhinovirus serotype 14 5′CL using a combination of nuclear magnetic resonance spectroscopy and small-angle X-ray scattering. In the absence of magnesium, the structure adopts an open, somewhat extended conformation. In the presence of magnesium, the structure compacts, bringing SLB and SLD into close contact, a geometry that creates an extensive accessible major groove surface, and permits interaction between the proteins that target each stem–loop

    Perturbing HIV-1 Ribosomal Frameshifting Frequency Reveals a cis Preference for Gag-Pol Incorporation into Assembling Virions

    Get PDF
    HIV-1 virion production is driven by Gag and Gag-Pol (GP) proteins, with Gag forming the bulk of the capsid and driving budding, while GP binds Gag to deliver the essential virion enzymes protease, reverse transcriptase, and integrase. Virion GP levels are traditionally thought to reflect the relative abundances of GP and Gag in cells (;1:20), dictated by the frequency of a 21 programmed ribosomal frameshifting (PRF) event occurring in gag-pol mRNAs. Here, we exploited a panel of PRF mutant viruses to show that mechanisms in addition to PRF regulate GP incorporation into virions. First, we show that GP is enriched ;3-fold in virions relative to cells, with viral infectivity being better maintained at subphysiological levels of GP than when GP levels are too high. Second, we report that GP is more efficiently incorporated into virions when Gag and GP are synthesized in cis (i.e., from the same gag-pol mRNA) than in trans, suggesting that Gag/GP translation and assembly are spatially coupled processes. Third, we show that, surprisingly, virions exhibit a strong upper limit to trans-delivered GP incorporation; an adaptation that appears to allow the virus to temper defects to GP/Gag cleavage that may negatively impact reverse transcription. Taking these results together, we propose a "weighted Goldilocks"scenario for HIV-1 GP incorporation, wherein combined mechanisms of GP enrichment and exclusion buffer virion infectivity over a broad range of local GP concentrations. These results provide new insights into the HIV-1 virion assembly pathway relevant to the anticipated efficacy of PRF-targeted antiviral strategies.National Institutes of Health R01AI110221, P01CA022332, R35GM118131, T32GM00834

    Dynamic Motions of the HIV-1 Frameshift Site RNA

    Get PDF
    The HIV-1 frameshift site (FS) plays a critical role in viral replication. During translation, the HIV-1 FS transitions from a 3-helix to a 2-helix junction RNA secondary structure. The 2-helix junction structure contains a GGA bulge, and purine-rich bulges are common motifs in RNA secondary structure. Here, we investigate the dynamics of the HIV-1 FS 2-helix junction RNA. Interhelical motions were studied under different ionic conditions using NMR order tensor analysis of residual dipolar couplings. In 150 mM potassium, the RNA adopts a 43°(±4°) interhelical bend angle (β) and displays large amplitude, anisotropic interhelical motions characterized by a 0.52(±0.04) internal generalized degree of order (GDOint) and distinct order tensor asymmetries for its two helices (η = 0.26(±0.04) and 0.5(±0.1)). These motions are effectively quenched by addition of 2 mM magnesium (GDOint = 0.87(±0.06)), which promotes a near-coaxial conformation (β = 15°(±6°)) of the two helices. Base stacking in the bulge was investigated using the fluorescent purine analog 2-aminopurine. These results indicate that magnesium stabilizes extrahelical conformations of the bulge nucleotides, thereby promoting coaxial stacking of helices. These results are highly similar to previous studies of the HIV transactivation response RNA, despite a complete lack of sequence similarity between the two RNAs. Thus, the conformational space of these RNAs is largely determined by the topology of their interhelical junctions

    Measuring the dynamic surface accessibility of RNA with the small paramagnetic molecule TEMPOL

    Get PDF
    The surface accessibility of macromolecules plays a key role in modulating molecular recognition events. RNA is a complex and dynamic molecule involved in many aspects of gene expression. However, there are few experimental methods available to measure the accessible surface of RNA. Here, we investigate the accessible surface of RNA using NMR and the small paramagnetic molecule TEMPOL. We investigated two RNAs with known structures, one that is extremely stable and one that is dynamic. For helical regions, the TEMPOL probing data correlate well with the predicted RNA surface, and the method is able to distinguish subtle variations in atom depths, such as the relative accessibility of pyrimidine versus purine aromatic carbon atoms. Dynamic motions are also detected by TEMPOL probing, and the method accurately reports a previously characterized pH-dependent conformational transition involving formation of a protonated C–A pair and base flipping. Some loop regions are observed to exhibit anomalously high accessibility, reflective of motions that are not evident within the ensemble of NMR structures. We conclude that TEMPOL probing can provide valuable insights into the surface accessibility and dynamics of RNA, and can also be used as an independent means of validating RNA structure and dynamics in solution

    Characterization of the kinetic and thermodynamic landscape of RNA folding using a novel application of isothermal titration calorimetry

    Get PDF
    A novel isothermal titration calorimetry (ITC) method was applied to investigate RNA helical packing driven by the GAAA tetraloop–receptor interaction in magnesium and potassium solutions. Both the kinetics and thermodynamics were obtained in individual ITC experiments, and analysis of the kinetic data over a range of temperatures provided Arrhenius activation energies (ΔH‡) and Eyring transition state entropies (ΔS‡). The resulting rich dataset reveals strongly contrasting kinetic and thermodynamic profiles for this RNA folding system when stabilized by potassium versus magnesium. In potassium, association is highly exothermic (ΔH25°C = −41.6 ± 1.2 kcal/mol in 150 mM KCl) and the transition state is enthalpically barrierless (ΔH‡ = −0.6 ± 0.5). These parameters are sigificantly positively shifted in magnesium (ΔH25°C = −20.5 ± 2.1 kcal/mol, ΔH‡ = 7.3 ± 2.2 kcal/mol in 0.5 mM MgCl2). Mixed salt solutions approximating physiological conditions exhibit an intermediate thermodynamic character. The cation-dependent thermodynamic landscape may reflect either a salt-dependent unbound receptor conformation, or alternatively and more generally, it may reflect a small per-cation enthalpic penalty associated with folding-coupled magnesium uptake

    A novel occluded RNA recognition motif in Prp24 unwinds the U6 RNA internal stem loop

    Get PDF
    The essential splicing factor Prp24 contains four RNA Recognition Motif (RRM) domains, and functions to anneal U6 and U4 RNAs during spliceosome assembly. Here, we report the structure and characterization of the C-terminal RRM4. This domain adopts a novel non-canonical RRM fold with two additional flanking α-helices that occlude its β-sheet face, forming an occluded RRM (oRRM) domain. The flanking helices form a large electropositive surface. oRRM4 binds to and unwinds the U6 internal stem loop (U6 ISL), a stable helix that must be unwound during U4/U6 assembly. NMR data indicate that the process starts with the terminal base pairs of the helix and proceeds toward the loop. We propose a mechanistic and structural model of Prp24′s annealing activity in which oRRM4 functions to destabilize the U6 ISL during U4/U6 assembly

    DNA mimicry by a high-affinity anti-NF-κB RNA aptamer

    Get PDF
    The binding of RNA molecules to proteins or other ligands can require extensive RNA folding to create an induced fit. Understanding the generality of this principle involves comparing structures of RNA before and after complex formation. Here we report the NMR solution structure of a 29-nt RNA aptamer whose crystal structure had previously been determined in complex with its transcription factor target, the p502 form of NF-κB. The RNA aptamer internal loop structure has pre-organized features that are also found in the complex, including non-canonical base pairing and cross-strand base stacking. Remarkably, the free RNA aptamer structure possesses a major groove that more closely resembles B-form DNA than RNA. Upon protein binding, changes in RNA structure include the kinking of the internal loop and distortion of the terminal tetraloop. Thus, complex formation involves both pre-formed and induced fit binding interactions. The high affinity of the NF-κB transcription factor for this RNA aptamer may largely be due to the structural pre-organization of the RNA that results in its ability to mimic DNA

    Genome-Wide Identification of Transcriptional Start Sites in the Plant Pathogen Pseudomonas syringae pv. tomato str. DC3000

    Get PDF
    RNA-Seq has provided valuable insights into global gene expression in a wide variety of organisms. Using a modified RNA-Seq approach and Illumina's high-throughput sequencing technology, we globally identified 5′-ends of transcripts for the plant pathogen Pseudomonas syringae pv. tomato str. DC3000. A substantial fraction of 5′-ends obtained by this method were consistent with results obtained using global RNA-Seq and 5′RACE. As expected, many 5′-ends were positioned a short distance upstream of annotated genes. We also captured 5′-ends within intergenic regions, providing evidence for the expression of un-annotated genes and non-coding RNAs, and detected numerous examples of antisense transcription, suggesting additional levels of complexity in gene regulation in DC3000. Importantly, targeted searches for sequence patterns in the vicinity of 5′-ends revealed over 1200 putative promoters and other regulatory motifs, establishing a broad foundation for future investigations of regulation at the genomic and single gene levels

    Real-world experience of nintedanib for progressive fibrosing interstitial lung disease in the UK

    Get PDF
    Background Nintedanib slows progression of lung function decline in patients with progressive fibrosing (PF) interstitial lung disease (ILD) and was recommended for this indication within the United Kingdom (UK) National Health Service in Scotland in June 2021 and in England, Wales and Northern Ireland in November 2021. To date, there has been no national evaluation of the use of nintedanib for PF-ILD in a real-world setting.Methods 26 UK centres were invited to take part in a national service evaluation between 17 November 2021 and 30 September 2022. Summary data regarding underlying diagnosis, pulmonary function tests, diagnostic criteria, radiological appearance, concurrent immunosuppressive therapy and drug tolerability were collected via electronic survey.Results 24 UK prescribing centres responded to the service evaluation invitation. Between 17 November 2021 and 30 September 2022, 1120 patients received a multidisciplinary team recommendation to commence nintedanib for PF-ILD. The most common underlying diagnoses were hypersensitivity pneumonitis (298 out of 1120, 26.6%), connective tissue disease associated ILD (197 out of 1120, 17.6%), rheumatoid arthritis associated ILD (180 out of 1120, 16.0%), idiopathic nonspecific interstitial pneumonia (125 out of 1120, 11.1%) and unclassifiable ILD (100 out of 1120, 8.9%). Of these, 54.4% (609 out of 1120) were receiving concomitant corticosteroids, 355 (31.7%) out of 1120 were receiving concomitant mycophenolate mofetil and 340 (30.3%) out of 1120 were receiving another immunosuppressive/modulatory therapy. Radiological progression of ILD combined with worsening respiratory symptoms was the most common reason for the diagnosis of PF-ILD.Conclusion We have demonstrated the use of nintedanib for the treatment of PF-ILD across a broad range of underlying conditions. Nintedanib is frequently co-prescribed alongside immunosuppressive and immunomodulatory therapy. The use of nintedanib for the treatment of PF-ILD has demonstrated acceptable tolerability in a real-world setting
    corecore