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Dynamic Motions of the HIV-1 Frameshift Site RNA
Kathryn D. Mouzakis,1 Elizabeth A. Dethoff,2 Marco Tonelli,1 Hashim Al-Hashimi,3 and Samuel E. Butcher1,*
1Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin; 2Department of Chemistry, University of North Carolina,
Chapel Hill, North Carolina; and 3Department of Chemistry, Duke University, Durham, North Carolina
ABSTRACT The HIV-1 frameshift site (FS) plays a critical role in viral replication. During translation, the HIV-1 FS transitions
from a 3-helix to a 2-helix junction RNA secondary structure. The 2-helix junction structure contains a GGA bulge, and purine-
rich bulges are common motifs in RNA secondary structure. Here, we investigate the dynamics of the HIV-1 FS 2-helix junction
RNA. Interhelical motions were studied under different ionic conditions using NMR order tensor analysis of residual dipolar cou-
plings. In 150 mM potassium, the RNA adopts a 43�(54�) interhelical bend angle (b) and displays large amplitude, anisotropic
interhelical motions characterized by a 0.52(50.04) internal generalized degree of order (GDOint) and distinct order tensor
asymmetries for its two helices (h ¼ 0.26(50.04) and 0.5(50.1)). These motions are effectively quenched by addition of
2 mM magnesium (GDOint ¼ 0.87(50.06)), which promotes a near-coaxial conformation (b ¼ 15�(56�)) of the two helices.
Base stacking in the bulge was investigated using the fluorescent purine analog 2-aminopurine. These results indicate that
magnesium stabilizes extrahelical conformations of the bulge nucleotides, thereby promoting coaxial stacking of helices. These
results are highly similar to previous studies of the HIV transactivation response RNA, despite a complete lack of sequence
similarity between the two RNAs. Thus, the conformational space of these RNAs is largely determined by the topology of their
interhelical junctions.
INTRODUCTION
RNA structures are composed of A-form helical domains
connected by bulges, single-stranded linkers, internal loops,
and nonhelical motifs (1). The connections between helices
allow RNA structures to adopt an ensemble of conformations
that are sampled through interhelical motions on the nano-
second tomillisecond timescale (2–6).Changes in the relative
orientation of helical domains are often observed during func-
tionally important RNA conformational transitions including
folding, adaptive recognition, and catalysis (7–11). RNA
bulges are an extremely common structural motif and occur
when two covalently connected helices are interrupted by a
single stretch of unpaired nucleotides (12–15).

The boundaries of allowed RNA interhelical conforma-
tional space are determined by simple topological con-
straints such as covalent connectivity, stereochemistry,
and steric clash. Furthermore, the observed distribution of
interhelical conformations in the Protein Data Bank (PDB)
mirrors the topologically allowed space (6). However,
sequence-specific conformational preferences and dynamic
motions are also known to exist (16–18). Little is known
about how sequence impacts the highly correlated bending
and twisting motions associated with RNA bulges (19).
Flanking basepairs may also have a large effect on RNA
dynamics (4,6,20).
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Despite the enormous size and diversity of RNA tran-
scriptomes (21–23), most of what is known about RNA dy-
namics has been derived from a relatively small collection
of RNAs (19,24–35). Among these, the HIV-1 transactiva-
tion response (TAR) RNA element has been studied exten-
sively and has served as a model for investigating RNA
motional amplitudes and dynamics (2,4,6,19,20,36–46).
TAR contains two helices separated by a flexible three-py-
rimidine (UCU) bulge. In low-ionic strength conditions,
TAR has an interhelical bend angle of 47�(55�) (18,37),
is flexible (36), and samples a wide but anisotropic range
of conformations (6,20,46) that feature spatially correlated
twisting and bending motions (46). Interestingly, the addi-
tion of magnesium has a striking effect on the interhelical
motions of TAR, resulting in coaxial stacking and quench-
ing of interhelical motions (37). These results can be
described with a simple two-state model (40) where stack-
ing of the bulge nucleotides separates the phosphate
charges in the UCU bulge, resulting in a bent but flexible
interhelical conformation favored by low to moderate
concentrations of monovalent ions. Magnesium ions effec-
tively shield the negatively charged phosphate groups in
the bulge, allowing them to move closer together to facili-
tate unstacking of nucleotides and resulting in a more rigid
coaxial state (40). Recent molecular dynamics (MD) simu-
lations of the TAR UCU bulge suggest that interhelical
dynamics involve at least three clusters of bulge ensembles
that display different hydrogen bonding patterns and
degrees of stacking (16).
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FIGURE 1 RNA constructs used to investigate the HIV-1 FS dynamics.

(A) The HIV-1 FS consensus sequence, (B) solution structure (PDB ID

1Z2J), and (C) secondary structure of the modified FS.
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It is not yet clear whether the large amplitude dynamic
motions of TAR (19,36) and their modulation by counter-
ions (3,37–40) are sequence-specific or reflect a more gen-
eral feature of trinucleotide bulges. Changing the sequence
identity of a Watson-Crick basepair flanking the TAR bulge
from A-U to a more stable G-C significantly diminishes the
amplitude of interhelical motions (17), supporting the idea
of sequence-dependent bulge dynamics. Indeed, MD simu-
lations suggest that adjacent basepair opening rates may
affect bulge dynamics (16). Transient electric birefringence
studies of RNA helices connected by A and U bulges
of varying lengths revealed that magnesium ions differen-
tially affect the bend angle of poly-U versus poly-A bugles
(18). In contrast, magnesium was observed to have no
impact on the average interhelical bend angle or dynamics
of the RNase P P4 domain, which has a single uridine
bulge (47).

The thermodynamic stability of bulges is likely to play
an important role in RNA interhelical motions. Although
the free energies for RNA dinucleotide steps within duplex
RNAs depend upon nearest-neighbor interactions (48–50),
the thermodynamic stability of bulges can be influenced
by distal (non-nearest-neighbor) tertiary interactions (51–
54). The thermodynamic contribution of single nucleotide
stacking is always small for nucleotides 50 of a helical
end, and depends on sequence for nucleotides 30 of a heli-
cal end (55–57). This is due to the right-handed nature of
the RNA helix, which exhibits more stacking for 30 vs. 50

terminal nucleotides (58). In general, 30 purines are more
stabilizing than pyrimidines (56,57). Therefore, purine
bulges are expected to have higher stacking propensities
than pyrimidine bulges, and these differences may signifi-
cantly influence interhelical dynamics. A MD study esti-
mated that unstacking of a single bulged adenosine from
within an RNA helix costs an additional ~1.5 kcal/mol of
free energy relative to flipping a uridine nucleotide into
solution (59). The sequence-dependent thermodynamics
of di- and trinucleotide bulges, and their impact on inter-
helical domain motions, have yet to be systematically
investigated.

Dynamic motions occurring over the course of picosec-
onds to milliseconds can be studied by NMR measurements
of residual dipolar couplings (RDCs) (3,5,60–64). These
couplings report angular information on the weighted
average of all conformations sampled by a macromolecule.
The long-range information derived from RDCs can be used
to efficiently quantify helical orientation and dynamics in a
variety of solution conditions (5). However, the coupling of
internal and overall domain motions can complicate the
interpretation of RDCs (2,65,66). This situation becomes
most problematic when internal motions alter the overall
molecular alignment such that the ordering of both domains
is indistinguishable, which interferes with the quantification
of interhelical motions (43,67). RDC measurements on arti-
ficially elongated helices have proven exceptional at decou-
pling overall motions from internal motions because the
overall alignment of an extended domain is less sensitive
to internal motions (2,19,43,45). However, unnaturally
long helical extensions are not necessary, as even moderate
differences in helical lengths can be sufficient to uncouple
these motions (16,43).

Here, we investigate the dynamics of the HIV-1 frame-
shift site (FS) RNA (63,68–72). During translation of the
FS, the RNA switches from a 3-helix junction structure
to a 2-helix junction via ribosome-mediated remodeling
of the RNA secondary structure (63). The 2-helix junction
form of this RNA has been shown to fold into an extremely
stable upper helix separated from a lower helix by a GGA
bulge (69,72,73) (Fig. 1 A). NMR and fluorescence spectros-
copy were employed to examine conformational dynamics
as a function of potassium and magnesium cation concentra-
tions. We find that, in potassium buffer alone, the RNA
adopts an average interhelical bend angle (b) of ~44� and
experiences large amplitude domain motions. These dy-
namics are largely quenched upon addition of 2 mMmagne-
sium. Addition of 2 mM magnesium to RNA in 20 mM
potassium promotes a decrease in the interhelical bend
angle to ~27� and leads to a higher degree of unstacking
of the central purine, as determined by fluorescence of
2-amino purine substituted RNA. These results are surpris-
ingly similar to previous studies of TAR (37,40), although
the TAR bulge is UCU, the FS bulge is GGA, and the clos-
ing basepairs are different.
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MATERIALS AND METHODS

RNA synthesis and purification

The consensus sequence for the lower helix of the HIV-1 FS (Fig. 1 A) was

modified and truncated (see Fig. 1 C) for optimal alignment of the longer,

upper helix in Pf1 phage. The synthetic oligonucleotide (50-TTCTAATAC
GACTCACTATAGGCGATCTGGCCTTCCCACAAGGGAAGGCCAGG

GAATCGCC-30) and its complement were purchased (Integrated DNA

Technologies (IDT)) and used as a template for in vitro transcription.

RNA for NMR was transcribed in vitro using purified His6-tagged T7

RNA polymerase and synthetic DNA oligonucleotides (IDT), as previously

described (69,71,74). 13C/15N-labeled RNA was prepared using 13C/15N-

labeled rNTPs (Cambridge Isotope Laboratories). RNA was purified using

12.5% denaturing polyacrylamide gel electrophoresis, identified by ultravi-

olet absorbance, and excised from the gel. RNAwas recovered by diffusion

into 0.3 M sodium acetate, precipitated with ethanol, purified on a High-Q

anion exchange column (Bio-Rad), again precipitated with ethanol, and de-

salted on a sephadex G-15 (Sigma) gel filtration column. The purified RNA

was lyophilized, resuspended in 20 mM KH2PO4 (pH 6.8), and exchanged

into each NMR buffer by dialysis against 2 L of buffer at 4�C. Partial
alignment of RNA for RDC measurements was achieved by adding Pf1

filamentous bacteriophage (ASLA, Riga, Latvia) at a final concentration

of ~10–15 mg/mL to 13C/15N-labeled samples. RNA used in fluorescence

experiments was purchased from IDT.
NMR spectroscopy

All NMR spectra were obtained on a Varian 900 MHz or Bruker 700 MHz

spectrometer at the National Magnetic Resonance Facility at Madison

(NMRFAM). The spectrometers were equipped with z-axis pulsed field

gradient cryogenically cooled probes. Chemical shifts were referenced to

2,2-dimethyl-2-silapentane-5-sulfonate (DSS) by adding 2 mM sodium

DSS directly to the samples. RDCs were measured in four different solution

conditions: 20 mM potassium phosphate (the 20 mM potassium condition)

alone or supplemented with either 130 mM potassium chloride (the

150 mM potassium condition), 2 mM magnesium chloride (the 20 mM po-

tassium and 2 mM magnesium condition), or 130 mM potassium chloride

and 2 mM magnesium chloride (the 150 mM potassium and 2 mM magne-

sium condition), all at pH 6.8. 1H-13C-S3A-heteronuclear single quantum

coherence (HSQC), 1H-13C-transverse relaxation-optimized spectroscopy

(TROSY)-HSQC, and 1H-15N-TROSY-HSQC experiments were used

to collect scalar coupling values in isotropic and partially aligned (~10–

15 mg/ml buffer-exchanged Pf1 filamentous bacteriophage (ASLA))

samples. RDCs were calculated by determining the difference in scalar

coupling values between isotropic and partially aligned samples. RDC

errors were calculated using the root mean-square deviation (rmsd) for

each bond type in both the direct and indirect dimensions and between

duplicate experiments, as described (67). Spin-pair resonance intensities

(peak heights) from 1H-13C-HSQC experiments were normalized to the in-

tensity of the corresponding A25, U8, C16, and G27 (or G24 in the 150 mM

potassium and 2 mM magnesium condition) spin-pair resonances. Such

spin pairs were chosen because they are expected to experience limited

motions (5), given their location in an extremely stable upper helix (69),

and their completeness in measurement across all conditions.
Order tensor analysis

RDCs measured in the Watson-Crick basepairs in the upper and lower heli-

ces were subjected to order tensor analysis using idealized A-form helices as

previously described (67) and validated (36,38,75–78). Upper and lower he-

lices were constructed using Insight II (Accelerys). A-formRNAparameters

were checked using 3DNA (79). Propeller twist was corrected using an in-

house program as described (67). RDCs were fit to the corrected A-form he-
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lices and order tensors were determined using RAMAH (77). CH and NH

dipolar couplings are normalized in RAMAH to account for the different

gyromagnetic ratios of 13C and 15N and the differences in CH and NH

bond lengths. RDCs corresponding to basepairs at the top and bottom of

each helix were excluded in the fits because of their departure from ideal

A-form RNA characteristics (67). To account for differences in alignment

between 100% D2O and 90% H2O/10% D2O NMR experiments, the
1H-15N data collected in 90% H2O/10% D2O were uniformly scaled such

that an identical order tensor solution with and without 1H-15N data was

achieved using RAMAH (77), as previously described (19). Order tensor

errors due to A-form structural noise and RDC error were calculated using

Aform-RDC (78), with the error input being the average RDC error (2–3Hz,

Tables S1–S4 in the Supporting Material). Excellent fits to order tensors

were achieved for RDCs measured under all conditions. In all instances,

the rmsd compared favorably with the RDC measurement uncertainty.

Order tensor solutions were used to rotate each A-form helix into its prin-

cipal axis system (PAS) using the program EULER-RNA (67). Order tensor

solutions have a 4n-1 degeneracy, where n is the number of helices, such that

once the helix is in its PAS, rotation by 180� about each principal axis yields
three additional degenerate order tensor solutions. To determine the correct

helix orientation, two connectivity restraints were used. The first required

connectivity between C7-P and U6-O30 atoms and eliminated two of the

four solutions. To satisfy this restraint, the lower helix was translated

without rotation such that the average A-form distance separated the

C7-P and U6-O30 atoms (80). Specifically, the U6-O30 atom was 1.58 Å

from the C7-P atom, with a 102� O50-P-O30 bond angle and a 62� dihedral
angle about the O50-P bond. A final solution was selected by elimination of

the model that violated the distance restraint between the G32-O30 and
A36-P atoms. This distance must be smaller than or equal to the theoreti-

cally allowed length of 21 Å (67). Interhelical bend angles (b) and dynamic

parameters were calculated in each condition as previously described (67).

To specifically compare the motion of one helix relative to the other, the

generalized degree of order (GDO) for the dynamic helix was normalized

by the GDO for the helix dominating the alignment, giving the internal

GDO (GDOint). Motional asymmetry was qualitatively evaluated using h.

Twist angles calculated by Euler-RNA have large uncertainties (~550�)
(67), and when the bend angle is near zero, the twist angle cannot be accu-

rately determined. For the 150 mM potassium and 2 mM magnesium con-

dition (15� interhelical bend angle), Euler-RNA predicted a 36� twist,

which required an additional �50� rotation about the z axis to avoid steric

clash between G32 and A36, producing a final twist of �14�. The principal
direction of order (Szz) orientation was determined relative to a molecular

frame in which the helical axis of the upper helix is aligned along the z axis.
Fluorescence-monitored nucleotide stacking

Fluorescence measurements were performed in triplicate similar to those

previously described (71). Briefly, the 2-aminopurine substituted RNAs

(HIV-1 G33-2AP, G34-2AP, and A35-2AP) were excited at 309 nm and

emission was measured at 360 nm with a Varian Cary Eclipse Fluorescence

spectrometer. Magnesium chloride and potassium chloride were added to

2 mM or 130 mM, respectively, into a 2 mM RNA and 20 mM potassium

phosphate buffer (pH 6.8) solution. To measure the impact of magnesium

on 2AP fluorescence in a 150 mM potassium background, magnesium

chloride was added to 2 mM into a 2 mMRNA, 150 mM potassium solution

(20 mM potassium phosphate, 130 mM potassium chloride, pH 6.8). Using

a 160 mL sample cell, fluorescence was measured for 2 s, five consecutive

times, at 30�C. The average of at least three replicates and standard devia-

tion are reported.
RESULTS AND DISCUSSION

The HIV-1 FS NMR structure is shown (Fig. 1, A and B)
(69). The lower helix was truncated to yield an overall
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alignment tensor dominated by the 11 basepair upper helix
(Fig. 1 C). Resonances were assigned by reference to previ-
ous assignments (69), analysis of two-dimensional nuclear
Overhauser effect spectroscopy spectra (data not shown),
and comparison of HSQC spectra measured in different
ionic conditions (Figs. S1 and S2). RDCs measured in
different ionic conditions were subjected to order tensor
analysis assuming an idealized A-form helix geometry
(3,62,67,81). We observed good agreement between the
measured and back-predicted RDCs in all four conditions
(Table 1: R2 ¼ 0.96–0.99, rmsd ¼ 1.7–3.5 Hz), validating
the use of order tensor solutions to describe interhelical
dynamics.

In the absence of magnesium, the upper helix was indeed
found to dominate the overall alignment as assessed by its
much larger GDO (Table 1: GDO ¼ 1.7–2.0) as compared
to the shorter helix (Table 1: GDO ¼1.0–1.1). As expected,
the principal axis of the order tensor (Szz) is oriented on
average nearly parallel to the axis of the upper helix, with
deviations of 7�(52�), 11�(53�), 3�(51�), and 2�(52�)
in 20 mM potassium, 150 mM potassium, 20 mM potassium
and 2 mM magnesium, and 150 mM potassium and 2 mM
magnesium, respectively.

In potassium alone, the RDCs measured for the lower he-
lix are on average, decreased in magnitude relative to the
upper helix (Fig. 2, A–C). These data are consistent with
large amplitude domain motions of the lower helix relative
to the upper helix, which dominates the alignment under
variable potassium concentrations. In both magnesium con-
ditions, the degree of alignment of the upper and lower he-
lices (Table 1, GDO), as well as the magnitude of the RDCs
(Fig. 2, D and E), is similar. This can be attributed to either
quenching of the interhelical motions upon addition of mag-
nesium or a motionally coupled state (43), the latter being
much less likely given the substantial differences between
the length of helices, the observation that Szz is minimally
changed in these four solution conditions, and the fact that
motional quenching with magnesium has been previously
observed (37,38,40). We therefore conclude that the internal
TABLE 1 Order tensor analysis of RDCs measured in the upper an

Ionic condition Helix N CN rmsd (Hz)

20 mM Kþ upper 24 3.3 2.5 0

lower 17 2.8 1.7 0

150 mM Kþ upper 19 3.7 3.5 0

lower 13 3.6 2.7 0

20 mM Kþ 2 mM Mg2þ upper 25 3.0 2.0 0

lower 11 4.8 3.2 0

150 mM Kþ 2 mM Mg2þ upper 28 2.5 3.1 0

lower 13 4.0 2.6 0

Shown for each helical domain is the number of RDCs (N), the condition number

calculated RDCs, the order tensor asymmetry (h ¼ jSyy – Sxxj/Szz), the general

the internal generalized degree of order (GDOint ¼ GDOi/GDOj; GDOi < GD

RAMAH (77) with errors estimated using the program AFORM-RDC (78).
motions of the HIV FS are effectively quenched by 2 mM
magnesium.

Interhelical bend angles were determined from the order
tensor solutions by rotating each idealized A-form helix
into the principal axis system of the order tensor (Szz, Syy,
Sxx). The two helices were then translated to satisfy connec-
tivity restraints between U6 and C7 and the distance
restraint between G32 and A36. Helical dynamics were as-
sessed using two additional order tensor terms: the internal
generalized degree of order (GDOint) and the asymmetry
parameter (h) (3,62,81). GDOint describes the amplitude
of interhelical motions and varies between 0 and 1, from
maximum to minimum motional amplitudes, respectively.
The asymmetry parameter for the two helices, h, can be
compared to obtain insights into the asymmetry of motions,
with large and small differences implying asymmetric and
isotropic motions, respectively (19,60,67,81). Dynamics
defined by no directional preference are deemed isotropic
and can be modeled assuming an isotropic cone motional
model (36,82–85).

In 20 mM potassium, the RNA adopts an average b of
43�(54�) (Fig. 3 A) and experiences large amplitude mo-
tions (Table 1: GDOint ¼ 0.67(50.03)). The differences
in h values (Table 1: h ¼ 0.12(50.04) and 0.31(50.03)
for the upper and lower helices, respectively) are indica-
tive of asymmetric interhelical motions (19). Prior studies
of RNA two-way junctions suggest that b for a three nucle-
otide bulge uniformly sampling all topologically accessible
conformations should be ~55� (18,20). Thus, the measured
average bend angle for the FS is consistent with highly
anisotropic domain motions. Anisotropic interhelical mo-
tions have been previously observed for TAR (6). In our pre-
vious study of the HIV-1 FS RNA structure in 50 mM NaCl,
we estimated an approximate bend angle of 60� (69) based
on a limited number of RDCs. In this study we make use of
more RDCs (41 vs. 21) and thus can more precisely define
this angle as 43�(54�).

In comparison to the 20 mM potassium condition
(Fig. 3 A), order tensor analysis revealed no significant
d lower helices in the HIV-1 FS RNA

R2 h GDO � 10�3 GDOint b

.99 0.12 5 0.04 1.67 5 0.05 0.67 5 0.03 43 5 4

.99 0.31 5 0.03 1.12 5 0.03

.98 0.26 5 0.04 2.0 5 0.1 0.52 5 0.04 44 5 4

.98 0.50 5 0.1 1.04 5 0.07

.98 0.06 5 .02 0.94 5 0.07 0.94 5 0.12 27 5 7

.96 0.50 5 0.09 1.0 5 0.1

.97 0.23 5 0.03 1.20 5 0.03 0.87 5 0.06 15 5 6

.98 0.35 5 0.07 1.04 5 0.07

(CN), the rmsd, the correlation coefficient (R2) between measured and back-

ized degree of order

 
GDO ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
ðS2xx þ S2yy þ S2zzÞ

q
; jSzzjR

��Syy��RjSxxj
!
;

Oj), and the interhelical bend angle (b). All values were generated using
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FIGURE 2 Secondary structure of the HIV-1 FS and measured RDC

data. (A) RNA used in this study. Circles (50 side) and triangles (30 side)
are used to distinguish RDC values measured on different sides of the helix.

(B) RDCs values as a function of helical position. Gray sections indicate

RDCs not used in order tensor analysis. The horizontal dashed lines corre-

spond to the average positive or negative RDC value in each helix,

excluding the terminal basepairs. RDCs (1DCH and 1DNH) correspond to

C8-H8 (black), C2-H2 (orange), C5-H5 (purple), C6-H6 (green), N1-H1

(dark blue), and N3-H3 (light blue) spin pairs in base moieties and the

C10-H10 (red) spin pair in the ribose ring in (B) 20 mM potassium, (C)

150 mM potassium, (D) 20 mM potassium and 2 mM magnesium, and

(E) 150 mM potassium and 2 mM magnesium.
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change in the average interhelical bend angle in 150 mM
potassium (Fig. 3 B, Table 1). The amplitude of interhelical
dynamics and motional asymmetry are similar in both con-
ditions as well. A modest reduction in GDOint and increase
Biophysical Journal 108(3) 644–654
in h values are observed at the higher potassium concentra-
tion (Table 1), consistent with a slight increase in motional
amplitude and asymmetry. A small but significant increase
in FS domain dynamics and motional asymmetry was
observed in 150 mM potassium relative to 20 mM potas-
sium. Increased RNA flexibility as a function of increasing
ionic strength has been previously observed for a 2-helix
model RNA system using small angle x-ray scattering (86).

RDCs were measured in two different magnesium condi-
tions (20 mM potassium and 2 mM magnesium, and
150 mM potassium and 2 mM magnesium) (Fig. 3, C and
D, Table 1). In 20 mM potassium and 2 mM magnesium,
the FS adopts a more coaxial orientation defined by a signif-
icant decrease in b (Fig. 3 C), from 43�(54�) to 27�(57�)
(Table 1). In 150 mM potassium and 2 mM magnesium b is
further decreased to 15�(56�) (Fig. 3 D). Interhelical
domain motions were nearly arrested by addition of magne-
sium (Table 1- GDOint ¼ 0.94(50.1) and 0.87(50.06) in
20 mM or 150 mM potassium with 2 mM magnesium,
respectively). RNA structural rigidity in the presence of
magnesium is consistent with previous observations for
the HIV-1 TAR RNA (18,37,38,40).

Prior studies have shown that normalized resonance in-
tensities provide a good measure of fast pico-nanosecond
motions particularly for base moieties (2,42). Fast timescale
dynamics in the loop nucleotides are evident from the reso-
nance intensities observed in 1H-13C-HSQC experiments
(Fig. 4 and Fig. S1) (2). Nucleotides within the tetraloop
(A18, C19, A20, and A21) and bulge (A35) have intensities
indicative of fast timescale motions. In each of the condi-
tions tested, the largest normalized resonance intensities
are in the tetraloop (Fig. 4). Significant tetraloop nucleotide
dynamics are consistent with previous observations (87,88).
The high intensity of bulge nucleotides G34 and A35 at low
ionic strength is in agreement with the observed disorder in
the NMR structure (69). Fast timescale motions of bulge
nucleotides likely indicate that these nucleobases are only
weakly stacked and may provide a flexible hinge point to
facilitate the observed interdomain motions. In the presence
of magnesium, many of the bulge aromatic resonances are
no longer visible, indicative of intermediate exchange due
to micromillisecond motions of the nucleobase, the magne-
sium-nucleobase interaction, or both.

Changes in bulge nucleotide stacking in response to
different ionic conditions were assessed by individual sub-
stitution of the purines in the bulge with the fluorescent pu-
rine analog 2-aminopurine (2AP). Because the GGA bulge
nucleotides do not participate in hydrogen bonding inter-
actions (69), incorporation of 2AP at these positions is ex-
pected to introduce minimal structural perturbation. 2AP
is a sensitive reporter of local structure because it fluoresces
when solvent accessible, but is quenched upon stacking with
other bases (89–99). A small number of RNA helical junc-
tions have been experimentally analyzed in this manner
(89,100). In all conditions tested, the 2AP nucleotide at



FIGURE 3 Order tensor analysis and the derived average orientations of the FS in variable potassium and magnesium concentrations. Correlation plots

between measured and back-calculated RDCs when order tensors are independently fit to an idealized A-form geometry for the upper (dark gray) and lower

(light gray) helices in (A) 20 mM potassium, (B) 150 mM potassium, (C) 20 mM potassium and 2 mM magnesium, and (D) 150 mM potassium and 2 mM

magnesium. Error bars in the x axis and y axis are representative of the RDCmeasurement uncertainty (Table S1) and calculated rmsd (Table 1), respectively.

In each condition, the RDC derived average orientation of the FS and interhelical bend angle is shown.
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position 33 displays relatively low fluorescence (Fig. 5 A),
consistent with a predominately stacked nucleotide confor-
mation. This observation agrees with a favorable stacking
free energy for purine nucleotides adjacent to a helical 30

end (55) (nucleotide 33 is directly 30 to the stable upper he-
lix). In contrast, 2AP substitutions at nucleotides 34 and 35
display significantly higher fluorescence relative to nucleo-
tide 33 (Fig. 5 A), consistent with unstacking of these bases
as observed for the conformers within the ensemble of the
HIV-1 FS (Fig. 5 B) (69).

In 20 mM potassium and 2 mM magnesium, a large in-
crease in fluorescence is observed at position 34 (Fig. 5 A)
indicating that magnesium promotes further unstacking of
the central base in the bulge under these conditions. How-
ever, this effect is not observed in 150 mM potassium and
2 mM magnesium (Fig. 5 A). A possible explanation for
this behavior is that the highest ionic strength condition
may promote extrahelical conformations of both nucleo-
bases 34 and 35 while inducing them to stack upon each
other. A bulged conformation for both nucleotides is consis-
tent with a conformational change related to the observed
decrease in the interhelical bend angle to 15�(56�)
(Fig. 3 D). However, we cannot exclude the possibility
that the 2-amino purine substituted RNA may respond
differently to magnesium than the unmodified RNA,
because 2-amino purine does not possess the electronegative
O6 functional group of guanine that is often involved in
magnesium ion interactions.

We examined chemical shift changes as a function of the
various ionic conditions employed in this study (Fig. S2).
The nucleotides around the bulge and in the tetraloop shift
in a near two-state manner, whereas nucleotides in stable
basepairs either do not shift (e.g., G27) or display only minor
chemical shift changes (G4, A25, A26). Interestingly, the
observed chemical shift changes do not track with overall
ionic strength. The largest chemical shift changes are
observed in 20 mM potassium and 2 mM magnesium.
Upon increasing potassium concentration (150 mM potas-
sium and 2 mM magnesium), the chemical shifts move
back toward the potassium-only chemical shifts. Our 2AP
fluorescence data also do not correlate with overall ionic
strength, revealing that unstacking of the bulge nucleobases
is greatest in 20 mM potassium and 2 mM magnesium, and
that this effect is inhibited by higher concentrations of
Biophysical Journal 108(3) 644–654



FIGURE 4 RNA dynamics measured by reso-

nance intensities. Normalized resonance intensities

(peak heights) measured from nonconstant-time
1H-13C-S3A HSQC and 1H-13C HSQC spectra.

Shown are the values for sugar C10H10 (diamonds)
and base C2H2 (squares), C5H5 (triangle), C6H6

(X), and C8H8 (circles) for the FS RNA. The inten-

sity for each type of C-H spin pair was normalized

by the intensity of the corresponding A25, U8,

C16, and G27 spin pairs in (A) 20 mM potassium,

(B) 150 mM potassium, and (C) 20 mM potassium

and 2 mM magnesium. (D) In 150 mM potassium

and 2 mM magnesium cation concentrations, the

intensity for each type of C-H spin pair was

normalized by the intensity of the corresponding

A25, U8, C16, and G24 spin pairs.
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potassium (Fig. 5 A). It is likely that the observed chemical
shifts are influenced by interactions with magnesium (40),
and that these interactions are shielded by higher concentra-
tions of potassium. In general, magnesium stabilizes base
stacking as indicated by upfield 13C shifts of C8 and C6
resonances (Figs. S1 and S2,A andD). As expected, the base-
paired nucleotides in the helical regions all have
C10 chemical shifts diagnostic of C30-endo sugar puckers
(91.6–91.4 ppm) and aromatic resonances consistent with
stacking (with the exception of the first nucleotide). The
ACAA tetraloop, on the other hand, has C10 shifts that are
indicative ofC20-endo sugar puckers in potassium, consistent
Biophysical Journal 108(3) 644–654
with the previously determined NMR structure. Upon addi-
tion of magnesium, the A20 and A21 C1’ resonances shift
downfield and display chemical shifts consistent with a
mixture of C2’ and C30-endo sugar puckers (Figs. S1 and
S2). As mentioned previously, not all resonances in the bulge
could be assigned in all conditions due to intermediate ex-
change in the presence of magnesium. However, the C8 of
G34 is shifted downfield (139.7 ppm) in 20 and 150 mM po-
tassium (Fig. S1), which is consistent with the unstacked
conformation observed in the NMR ensemble. On the other
hand, the C8 of A36 shifts upfield from 140.6 ppm (20 mM
potassium) to 139.7 ppm (20 mM potassium and 2 mM



FIGURE 5 Bulge nucleotide stacking as a function of ionic conditions.

(A) Relative fluorescence units for 2 mMRNAwith 2AP incorporated at po-

sitions 33, 34, or 35 were measured in 20 mM potassium (white), 150 mM

potassium (hashed), 20 mM potassium and 2 mM magnesium (gray), and

150 mM potassium and 2 mM magnesium (black) cation concentrations.

Error bars representing the standard error of the mean are shown. (B)

Ensemble of bulge conformers from the NMR structure solved in 50 mM

NaCl (PDB ID 1Z2J).
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magnesium), consistent with magnesium-induced stacking
with the 50 neighboring A35 base. We therefore infer that
in 20 mM potassium and 2 mM Mg2þ, A35 is stacked on
A36 and G34 is extrahelical. The A35 C8 resonance also
shifts upfield from 141.7 (150 mM potassium) to 141.2
ppm in 150 mmKþ and 2 mMmagnesium. This is consistent
withA35 stackingwith G34 in the highest ionic strength con-
dition, which is in agreement with the fluorescence data. In
bulge regions, magnesium appears to stabilize extrahelical
nucleobase conformations by enabling the close approach
of neighboring phosphate groups (16).
CONCLUSIONS

Overall, our results are remarkably similar to those that have
been previously measured for TAR (2,4,6,19,20,36–46).
Both RNAs have similar average interhelical bend angles
(~43� (FS) and ~47� (TAR) (36)), exhibit fast timescale
nucleotide dynamics in their trinucleotide bulge and loop re-
gions (27,42,44), and display markedly anisotropic helical
motions (43) that are quenched by physiological concentra-
tions of magnesium (37,101). These results suggest that the
dynamics of both RNAs are largely governed by topological
constraints. Interestingly, there are also subtle differences in
the dynamics of these RNAs. TAR is more flexible than the
FS, with a GDOint of 0.45(50.05) (43) compared to the FS
GDOint of 0.67(50.03). The relative decrease in flexibility
for the FS may be the result of more favorable stacking in-
teractions and possibly a greater level of steric constraints
due to the purine bulge. The basepairs above and below
the bulge are different for TAR and the FS and can also in-
fluence RNA dynamics (20).

Both the TAR and FS RNAs helices are coaxially aligned
in physiological concentrations of magnesium (20,37,101).
However, the extent of coaxial linearity is not equivalent
for the two RNAs under similar ionic conditions (b ¼
~27� (FS, 2 mM magnesium and 20 mM potassium) versus
~5� (TAR, 2 mM magnesium and 50 mM sodium) (37)).
These findings are corroborated by observations from
Zacharias and Hagerman (18), which showed that helical
domains connected by poly-U linkers more easily adopt co-
axial conformations in the presence of divalent ions than
their poly-A counterparts. The differences in extent of coax-
ial alignment may be attributed to the energetic penalty of
purine nucleotide unstacking (59). The propensity of purine
nucleotides to stack (102,103) may limit changes in inter-
helical orientation in response to the stabilizing effect
of divalent ions (104). Therefore, the degree of flexibility
in the linker may depend on its sequence, with purine-rich
sequences restricting changes in interhelical orientation to
a greater degree than pyrimidine-rich sequences.

The striking similarities between the HIV TAR and FS
RNAs suggest that topology largely determines the confor-
mational space of these, and perhaps many RNA junctions.
However, sequence-specific effects can dramatically alter
RNA dynamic behavior as previously noted (17,26).
For example, there are interesting differences between
our measurements and the previous work of Zacharias and
Hagerman (18), in which they measured the bend angles
associated with poly-A bulges in 5 mM sodium phosphate
buffer, with and without 2 mM magnesium. For an AAA
bulge, an interhelical bend angle of 58�(54�) is reported
in both conditions (18). In contrast, we observe near-coaxial
helical stacking for the FS RNA, which has a GGA bulge, in
the presence of 150 mM potassium and 2 mM magnesium.
The observed differences are likely due to the different
bulge sequences, as magnesium ions associate much more
strongly with guanines than adenines due to the ability of
the electronegative O6 functional group to assist in metal
ion coordination at the neighboring N7 atom (105).
SUPPORTING MATERIAL
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