173 research outputs found
Miniature shock tube for laser driven shocks
International audienceWe describe in this paper the design of a miniature shock tube (smaller than 1 cm3) that can be placed in a vacuum vessel and allows transverse optical probing and longitudinal backside XUV emission spectroscopy. Typical application is the study of laser launched radiative shocks, in the framework of what is called "laboratory Astrophysics"
Measure of precursor electron density profiles of laser launched radiative shocks
We have studied the dynamics of strong radiative shocks generated with the
high-energy subnanosecond iodine laser at Prague Asterix Laser System facilityComment: with small correction in Fig.1
The Identification of Filaments on Far-Infrared and Submillimiter Images: Morphology, Physical Conditions and Relation with Star Formation of Filamentary Structure
Observations of molecular clouds reveal a complex structure, with gas and dust often arranged in filamentary, rather than spherical geometries. The association of pre- and proto-stellar cores with the filaments suggests a direct link with the process of star formation. Any study of the properties of such filaments requires representative samples from different environments for an unbiased detection method. We developed such an approach using the Hessian matrix of a surface-brightness distribution to identify filaments and determine their physical and morphological properties. After testing the method on simulated, but realistic, filaments, we apply the algorithms to column-density maps computed from Herschel observations of the Galactic plane obtained by the Hi-GAL project. We identified ~500 filaments, in the longitude range of l = 216fdg5 to l = 225fdg5, with lengths from ~1 pc up to ~30 pc and widths between 0.1 pc and 2.5 pc. Average column densities are between 1020 cm–2 and 1022 cm–2. Filaments include the majority of dense material with  > 6 × 1021 cm–2. We find that the pre- and proto-stellar compact sources already identified in the same region are mostly associated with filaments. However, surface densities in excess of the expected critical values for high-mass star formation are only found on the filaments, indicating that these structures are necessary to channel material into the clumps. Furthermore, we analyze the gravitational stability of filaments and discuss their relationship with star formation
Phytochemicals as antibiotic alternatives to promote growth and enhance host health
There are heightened concerns globally on emerging drug-resistant superbugs and the lack of new antibiotics for treating human and animal diseases. For the agricultural industry, there is an urgent need to develop strategies to replace antibiotics for food-producing animals, especially poultry and livestock. The 2nd International Symposium on Alternatives to Antibiotics was held at the World Organization for Animal Health in Paris, France, December 12-15, 2016 to discuss recent scientific developments on strategic antibiotic-free management plans, to evaluate regional differences in policies regarding the reduction of antibiotics in animal agriculture and to develop antibiotic alternatives to combat the global increase in antibiotic resistance. More than 270 participants from academia, government research institutions, regulatory agencies, and private animal industries from >25 different countries came together to discuss recent research and promising novel technologies that could provide alternatives to antibiotics for use in animal health and production; assess challenges associated with their commercialization; and devise actionable strategies to facilitate the development of alternatives to antibiotic growth promoters (AGPs) without hampering animal production. The 3-day meeting consisted of four scientific sessions including vaccines, microbial products, phytochemicals, immune-related products, and innovative drugs, chemicals and enzymes, followed by the last session on regulation and funding. Each session was followed by an expert panel discussion that included industry representatives and session speakers. The session on phytochemicals included talks describing recent research achievements, with examples of successful agricultural use of various phytochemicals as antibiotic alternatives and their mode of action in major agricultural animals (poultry, swine and ruminants). Scientists from industry and academia and government research institutes shared their experience in developing and applying potential antibiotic-alternative phytochemicals commercially to reduce AGPs and to develop a sustainable animal production system in the absence of antibiotics.Fil: Lillehoj, Hyun. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Liu, Yanhong. University of California; Estados UnidosFil: Calsamiglia, Sergio. Universitat Autònoma de Barcelona; EspañaFil: Fernandez Miyakawa, Mariano Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Patobiología; ArgentinaFil: Chi, Fang. Amlan International; Estados UnidosFil: Cravens, Ron L.. Amlan International; Estados UnidosFil: Oh, Sungtaek. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Gay, Cyril G.. United States Department of Agriculture. Agricultural Research Service; Argentin
First detection of gas-phase ammonia in a planet-forming disk. NH₃, N₂H⁺, and H₂O in the disk around TW Hydrae
Context. Nitrogen chemistry in protoplanetary disks and the freeze-out on dust particles is key for understanding the formation of nitrogen-bearing species in early solar system analogs. In dense cores, 10% to 20% of the nitrogen reservoir is locked up in ices such as NH3, NH4+ and OCN−. So far, ammonia has not been detected beyond the snowline in protoplanetary disks. Aims. We aim to find gas-phase ammonia in a protoplanetary disk and characterize its abundance with respect to water vapor. Methods. Using HIFI on the Herschel Space Observatory, we detected for the first time the ground-state rotational emission of ortho-NH3 in a protoplanetary disk around TW Hya. We used detailed models of the disk’s physical structure and the chemistry of ammonia and water to infer the amounts of gas-phase molecules of these species. We explored two radial distributions (extended across the disk and confined to <60 au like the millimeter-sized grains) and two vertical distributions (near the midplane and at intermediate heights above the midplane, where water is expected to photodesorb off icy grains) to describe the (unknown) location of the molecules. These distributions capture the effects of radial drift and vertical settling of ice-covered grains. Results. The NH310–00 line is detected simultaneously with H2O 110–101 at an antenna temperature of 15.3 mK in the Herschel beam; the same spectrum also contains the N2H+ 6–5 line with a strength of 18.1 mK. We use physical-chemical models to reproduce the fluxes and assume that water and ammonia are cospatial. We infer ammonia gas-phase masses of 0.7−11.0 × 1021 g, depending on the adopted spatial distribution, in line with previous literature estimates. For water, we infer gas-phase masses of 0.2−16.0 × 1022 g, improving upon earlier literature estimates This corresponds to NH3/H2O abundance ratios of 7%−84%, assuming that water and ammonia are co-located. The inferred N2H+ gas mass of 4.9 × 1021 g agrees well with earlier literature estimates that were based on lower excitation transitions. These masses correspond to a disk-averaged abundances of 0.2−17.0 × 10-11, 0.1−9.0 × 10-10 and 7.6 × 10-11 for NH3, H2O and N2H+ respectively. Conclusions. Only in the most compact and settled adopted configuration is the inferred NH3/H2O consistent with interstellar ices and solar system bodies of ~5%–10%; all other spatial distributions require additional gas-phase NH3 production mechanisms. Volatile release in the midplane may occur through collisions between icy bodies if the available surface for subsequent freeze-out is significantly reduced, for instance, through growth of small grains into pebbles or larger bodies
Travelers With Cutaneous Leishmaniasis Cured Without Systemic Therapy
Guidelines recommend wound care and/or local therapy as first-line treatment for cutaneous leishmaniasis. An analysis of a referral treatment program in 135 travelers showed that this approach was feasible in 62% of patients, with positive outcome in 83% of evaluable patient
The role of the magnetic field in the fragmentation process: the case of G14.225-0.506
B-fields are predicted to play a role in the formation of filamentary
structures and their fragmentation process. We aim at investigating the role of
the B-field in the process of core fragmentation toward the hub-filament
systems in the IRDC G14.2, which present different fragmentation level. We
performed observations of the thermal dust polarization at 350 {\mu}m using the
CSO toward the hubs. We applied the polarization--intensity-gradient method to
estimate the significance of the B-field over the G-force. The B-field in Hub-N
shows a uniform structure along the E-W orientation, perpendicular to the major
axis of the hub-filament system. The I-gradient in Hub-N displays a local
minimum coinciding with the dust core MM1a detected with interferometric
observations. The B-field orientation is perturbed when approaching the dust
core. Hub-S shows 2 local minima, reflecting the bimodal distribution of the
B-field. In Hub-N, both E and W of the hub-filament system, the I-gradient and
the B-field are parallel whereas they tend to be perpendicular when penetrating
the filaments and hub. The analysis of the {\delta}- and {\Sigma} B-maps
indicate that, the B-field cannot prevent the collapse, suggesting that the
B-field is initially dragged by the infalling motion and aligned with it, or is
channeling material toward the central ridge from both sides. Values of
{\Sigma} B > 1 are found toward a N-S ridge encompassing the dust emission
peak, indicating that in this region B-field dominates over G-force, or that
with the current angular resolution we cannot resolve an hypothetical more
complex structure. We estimated the B-field strength, the MtF ratio and the A-M
number, and found differences between the 2 hubs. The different levels of
fragmentation observed in these 2 hubs could arise from the differences in the
B-field properties rather than from different intensity of the G-field.Comment: 14 pages, 9 figure
Mid-J CO emission in nearby Seyfert galaxies
We study for the first time the complete sub-millimeter spectra (450 GHz to 1550 GHz) of a sample of nearby active galaxies observed with the SPIRE Fourier Transform Spectrometer (SPIRE/FTS) onboard Herschel. The CO ladder (from Jup = 4 to 12) is the most prominent spectral feature in this range. These CO lines probe warm molecular gas that can be heated by ultraviolet photons, shocks, or X-rays originated in the active galactic nucleus or in young star-forming regions. In these proceedings we investigate the physical origin of the CO emission using the averaged CO spectral line energy distribution (SLED) of six Seyfert galaxies. We use a radiative transfer model assuming an isothermal homogeneous medium to estimate the molecular gas conditions. We also compare this CO SLED with the predictions of photon and X-ray dominated region (PDR and XDR) models
Modeling the Accretion Disk around the High-mass Protostar GGD 27-MM1
Recent high angular resolution (≃40 mas) ALMA observations at 1.14 mm resolve a compact (R ≃ 200 au), flattened dust structure perpendicular to the HH 80─81 jet emanating from the GGD 27-MM1 high-mass protostar, making it a robust candidate for a true accretion disk. The jet─disk system (HH 80─81/GGD 27-MM1) resembles those found in association with low- and intermediate-mass protostars. We present radiative transfer models that fit the 1.14 mm ALMA dust image of this disk, which allow us to obtain its physical parameters and predict its density and temperature structure. Our results indicate that this accretion disk is compact (R disk ≃ 170 au) and massive (≃5 M ☉), at about 20% of the stellar mass of ≃20 M ☉. We estimate the total dynamical mass of the star─disk system from the molecular line emission, finding a range between 21 and 30 M ☉, which is consistent with our model. We fit the density and temperature structures found by our model with power-law functions. These results suggest that accretion disks around massive stars are more massive and hotter than their low-mass siblings, but they still are quite stable. We also compare the temperature distribution in the GGD 27─MM1 disk with that found in low- and intermediate-mass stars and discuss possible implications for the water snow line. We have also carried out a study of the distance based on Gaia DR2 data and the population of young stellar objects in this region and from the extinction maps. We conclude that the source distance is within 1.2 and 1.4 kpc, closer than what was derived in previous studies (1.7 kpc).Fil: Añez López, N.. Instituto de Ciencias del Espacio; EspañaFil: Osorio, M.. Instituto de Astrofísica de Andalucía; EspañaFil: Busquet, G.. Instituto de Ciencias del Espacio; EspañaFil: Girart, J. M.. Instituto de Ciencias del Espacio; EspañaFil: Macías, E.. European Southern Observatory; ChileFil: Carrasco González, C.. Instituto de Radioastronomía y Astrofísica; MéxicoFil: Curiel, S.. Universidad Nacional Autonoma de Mexico. Instituto de Astronomia; MéxicoFil: Estalella, R.. Universidad de Barcelona. Facultad de Física; EspañaFil: Fernandez Lopez, Manuel. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Galván Madrid, R.. Instituto de Radioastronomía y Astrofísica; MéxicoFil: Kwon, J.. University of tokyo; JapónFil: Torrelles, J. M.. Institut de Ciencies de l’Espai; Españ
- …
