1,204 research outputs found

    Heat balance of the Earth

    Get PDF
    Results of improved calculations of the heat balance components of Earth's surface are reported for yearly average conditions. The technique used to determine the heat-balance components from land- and sea-based actinometric observations as well as from satellite data on the radiation balance of the Earth-atmosphere system is described, with special attention given to short-wavelength solar radiation on the continents, effective radiation from the land surface, the radiation balance of the ocean surface, heat expended by both evaporation from the ocean surface, and turbulent heat transfer between the ocean surface and the atmosphere. World maps of heat-balance components show yearly average values of total radiation, radiation balance, heat expended by evaporation, the turbulent heat flow between Earth's surface and atmosphere, and heat transfer between the ocean surface and underlying waters. The global surface heat balance is estimated along with global values of the various components and the heat-balance components for different latitude zones

    Habitable Climates

    Full text link
    According to the standard liquid-water definition, the Earth is only partially habitable. We reconsider planetary habitability in the framework of energy-balance models, the simplest seasonal models in physical climatology, to assess the spatial and temporal habitability of Earth-like planets. We quantify the degree of climatic habitability of our models with several metrics of fractional habitability. Previous evaluations of habitable zones may have omitted important climatic conditions by focusing on close Solar System analogies. For example, we find that model pseudo-Earths with different rotation rates or different land-ocean fractions have fractional habitabilities that differ significantly from that of the Earth itself. Furthermore, the stability of a planet's climate against albedo-feedback snowball events strongly impacts its habitability. Therefore, issues of climate dynamics may be central in assessing the habitability of discovered terrestrial exoplanets, especially if astronomical forcing conditions are different from the moderate Solar System cases.Comment: Accepted by ApJ. Several references added. 41 pages, 11 figures, 2 table

    Thermodynamic analysis of snowball Earth hysteresis experiment: Efficiency, entropy production and irreversibility

    Get PDF
    We present an extensive thermodynamic analysis of a hysteresis experiment performed on a simplified yet Earth-like climate model. We slowly vary the solar constant by 20% around the present value and detect that for a large range of values of the solar constant the realization of snowball or of regular climate conditions depends on the history of the system. Using recent results on the global climate thermodynamics, we show that the two regimes feature radically different properties. The efficiency of the climate machine monotonically increases with decreasing solar constant in present climate conditions, whereas the opposite takes place in snowball conditions. Instead, entropy production is monotonically increasing with the solar constant in both branches of climate conditions, and its value is about four times larger in the warm branch than in the corresponding cold state. Finally, the degree of irreversibility of the system, measured as the fraction of excess entropy production due to irreversible heat transport processes, is much higher in the warm climate conditions, with an explosive growth in the upper range of the considered values of solar constants. Whereas in the cold climate regime a dominating role is played by changes in the meridional albedo contrast, in the warm climate regime changes in the intensity of latent heat fluxes are crucial for determining the observed properties. This substantiates the importance of addressing correctly the variations of the hydrological cycle in a changing climate. An interpretation of the climate transitions at the tipping points based upon macro-scale thermodynamic properties is also proposed. Our results support the adoption of a new generation of diagnostic tools based on the second law of thermodynamics for auditing climate models and outline a set of parametrizations to be used in conceptual and intermediate-complexity models or for the reconstruction of the past climate conditions. Copyright © 2010 Royal Meteorological Societ

    Internal Waves Influence the Thermal and Nutrient Environment on a Shallow Coral Reef

    Get PDF
    Internal waves can influence water properties in coastal ecosystems through the shoreward transport and mixing of subthermocline water into the nearshore region. In June 2014, a field experiment was conducted at Dongsha Atoll in the northern South China Sea to study the impact of internal waves on a coral reef. Instrumentation included a distributed temperature sensing system, which resolved spatially and temporally continuous temperature measurements over a 4‐km cross‐reef section from the lagoon to 50‐m depth on the fore reef. Our observations show that during summer, internal waves shoaling on the shallow atoll regularly transport cold, nutrient‐rich water shoreward, altering near‐surface water properties on the fore reef. This water is transported shoreward of the reef crest by tides, breaking surface waves and wind‐driven flow, where it significantly alters the water temperature and nutrient concentrations on the reef flat. We find that without internal wave forcing on the fore reef, temperatures on the reef flat could be up to 2.0°C ± 0.2°C warmer. Additionally, we estimate a change in degree heating weeks of 0.7°C‐weeks warmer without internal waves, which significantly increases the probability of a more severe bleaching event occurring at Dongsha Atoll. Furthermore, using nutrient samples collected on the fore reef during the study, we estimated that instantaneous onshore nitrate flux is about four‐fold higher with internal waves than without internal waves. This work highlights the importance of internal waves as a physical mechanism shaping the nearshore environment, and likely supporting resilience of the reef

    Daisyworld: a review

    No full text
    Daisyworld is a simple planetary model designed to show the long-term effects of coupling between life and its environment. Its original form was introduced by James Lovelock as a defense against criticism that his Gaia theory of the Earth as a self-regulating homeostatic system requires teleological control rather than being an emergent property. The central premise, that living organisms can have major effects on the climate system, is no longer controversial. The Daisyworld model has attracted considerable interest from the scientific community and has now established itself as a model independent of, but still related to, the Gaia theory. Used widely as both a teaching tool and as a basis for more complex studies of feedback systems, it has also become an important paradigm for the understanding of the role of biotic components when modeling the Earth system. This paper collects the accumulated knowledge from the study of Daisyworld and provides the reader with a concise account of its important properties. We emphasize the increasing amount of exact analytic work on Daisyworld and are able to bring together and summarize these results from different systems for the first time. We conclude by suggesting what a more general model of life-environment interaction should be based on

    Evapotranspiration in Northern Eurasia : impact of forcing uncertainties on terrestrial ecosystem model estimates

    Get PDF
    The ecosystems in Northern Eurasia (NE) play an important role in the global water cycle and the climate system. While evapotranspiration (ET) is a critical variable to understand this role, ET over this region remains largely unstudied. Using an improved version of the Terrestrial Ecosystem Model with five widely used forcing data sets, we examine the impact that uncertainties in climate forcing data have on the magnitude, variability, and dominant climatic drivers of ET for the period 1979-2008. Estimates of regional average ET vary in the range of 241.4-335.7mmyr(-1) depending on the choice of forcing data. This range corresponds to as much as 32% of the mean ET. Meanwhile, the spatial patterns of long-term average ET across NE are generally consistent for all forcing data sets. Our ET estimates in NE are largely affected by uncertainties in precipitation (P), air temperature (T), incoming shortwave radiation (R), and vapor pressure deficit (VPD). During the growing season, the correlations between ET and each forcing variable indicate that T is the dominant factor in the north and P in the south. Unsurprisingly, the uncertainties in climate forcing data propagate as well to estimates of the volume of water available for runoff (here defined as P-ET). While the Climate Research Unit data set is overall the best choice of forcing data in NE according to our assessment, the quality of these forcing data sets remains a major challenge to accurately quantify the regional water balance in NE

    The stochastic resonance mechanism in the Aerosol Index dynamics

    Get PDF
    We consider Aerosol Index (AI) time-series extracted from TOMS archive for an area covering Italy (718oE;3647oN)(7-18^o E ; 36-47^o N). The missing of convergence in estimating the embedding dimension of the system and the inability of the Independent Component Analysis (ICA) in separating the fluctuations from deterministic component of the signals are evidences of an intrinsic link between the periodic behavior of AI and its fluctuations. We prove that these time series are well described by a stochastic dynamical model. Moreover, the principal peak in the power spectrum of these signals can be explained whereby a stochastic resonance, linking variable external factors, such as Sun-Earth radiation budget and local insolation, and fluctuations on smaller spatial and temporal scale due to internal weather and antrophic components

    Habitability and multistablility in earth-like plantets

    Get PDF
    We explore the potential multistability of the climate for a planet around the habitable zone. We focus on conditions reminiscent to those of the Earth system, but our investigation aims at presenting a general methodology for dealing with exoplanets. We provide a thorough analysis of the non-equilibrium thermodynamical properties of the climate system and explore, using a a flexible climate model, how such properties depend on the energy input of the parent star, on the infrared atmospheric opacity, and on the rotation rate. It is possible to reproduce the multi-stability properties reminiscent of the paleoclimatologically relevant snowball (SB) - warm (W) conditions. We then study the thermodynamics of the W and SB states, clarifying the role of the hydrological cycle in shaping the irreversibility and the efficiency of the W states, and emphasizing the extreme diversity of the SB states, where dry conditions are realized. Thermodynamics provides the clue for studying the tipping points of the system and leads us to constructing parametrizations where the main thermodynamic properties are expressed as functions of the emission temperature of the planet only. Such functions are rather robust with respect to changing the rotation rate of the planet from the current terrestrial one to half of it. We then explore the dynamical range of slowy rotating and phase locked planets. There is a critical rotation rate below which the multi-stability properties are lost. Such critical rotation rate corresponds roughly to the phase lock 2:1 condition. Therefore, if an Earth-like planet is 1:1 phase locked with respect to the parent star, only one climatic state would be compatible with a given set of astronomical and astrophysical parameters. These results have relevance for the general theory of planetary circulation and for the definition of necessary and sufficient conditions for habitability

    How Climate Model Complexity Influences Sea Ice Stability

    Full text link
    Abstract Record lows in Arctic sea ice extent have been making frequent headlines in recent years. The change in albedo when sea ice is replaced by open water introduces a nonlinearity that has sparked an ongoing debate about the stability of the Arctic sea ice cover and the possibility of Arctic “tipping points.” Previous studies identified instabilities for a shrinking ice cover in two types of idealized climate models: (i) annual-mean latitudinally varying diffusive energy balance models (EBMs) and (ii) seasonally varying single-column models (SCMs). The instabilities in these low-order models stand in contrast with results from comprehensive global climate models (GCMs), which typically do not simulate any such instability. To help bridge the gap between low-order models and GCMs, an idealized model is developed that includes both latitudinal and seasonal variations. The model reduces to a standard EBM or SCM as limiting cases in the parameter space, thus reconciling the two previous lines of research. It is found that the stability of the ice cover vastly increases with the inclusion of spatial communication via meridional heat transport or a seasonal cycle in solar forcing, being most stable when both are included. If the associated parameters are set to values that correspond to the current climate, the ice retreat is reversible and there is no instability when the climate is warmed. The two parameters have to be reduced by at least a factor of 3 for instability to occur. This implies that the sea ice cover may be substantially more stable than has been suggested in previous idealized modeling studies
    corecore