64 research outputs found

    Optimal combinable and dedicated energy crop scenarios for marginal land

    Get PDF
    Modern biomass energy sources account for less than 2% of primary world energy supplies while major economies have enabled legislation that aims to increase bioenergy production. In response to controversies over first generation biofuel, it has been argued that ‘marginal land’ should be used to produce dedicated energy crops (DECs). However, defining marginality of agricultural land is complex, and moreover, DECs would have to out-compete current agricultural production in these areas. Utilising a bio-economic farm-level modelling approach we investigate the impact that crop yield penalties resulting from production in marginal land contexts have on financially optimal farm-level crop plans. Where farm businesses choose to de-invest in own farm machinery, yield reductions of less than 10% for winter wheat result in a financially optimal switch to 100% miscanthus production. By contrast, in the presence of own farm machinery, winter wheat yield penalties of 30% are required before 100% miscanthus production is financially optimal. However, under circumstances where DECs also suffer yield penalties on marginal land, the financially optimal crop mix includes combinable crops. The results demonstrate that the optimal crop mix is dependent upon the relative combinable and DEC yields, together with farm-level decisions towards machinery ownership. The focus of much policy attention relating to production of DECs on ‘marginal land’ is therefore argued to be incomplete. Policies which encourage farmers to de-invest in own farm machinery, or incentivise the purchase of specific DEC machinery, may play an important role in assisting the development of DEC production

    Measurement of the Isolated Photon Cross Section in p-pbar Collisions at sqrt{s}=1.96 TeV

    Get PDF
    The cross section for the inclusive production of isolated photons has been measured in p anti-p collisions at sqrt{s}=1.96 TeV with the D0 detector at the Fermilab Tevatron Collider. The photons span transverse momenta 23 to 300 GeV and have pseudorapidity |eta|<0.9. The cross section is compared with the results from two next-to-leading order perturbative QCD calculations. The theoretical predictions agree with the measurement within uncertainties.Comment: 7 pages, 5 figures, submitted to Phys.Lett.

    The Physics of Star Cluster Formation and Evolution

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00689-4.Star clusters form in dense, hierarchically collapsing gas clouds. Bulk kinetic energy is transformed to turbulence with stars forming from cores fed by filaments. In the most compact regions, stellar feedback is least effective in removing the gas and stars may form very efficiently. These are also the regions where, in high-mass clusters, ejecta from some kind of high-mass stars are effectively captured during the formation phase of some of the low mass stars and effectively channeled into the latter to form multiple populations. Star formation epochs in star clusters are generally set by gas flows that determine the abundance of gas in the cluster. We argue that there is likely only one star formation epoch after which clusters remain essentially clear of gas by cluster winds. Collisional dynamics is important in this phase leading to core collapse, expansion and eventual dispersion of every cluster. We review recent developments in the field with a focus on theoretical work.Peer reviewe

    Measurement of the differential cross section for the production of an isolated photon with associated jet in ppbar collisions at sqrt(s)=1.96 TeV

    Get PDF
    The process ppbar -> photon + jet + X is studied using 1.0 fb^-1 of data collected by the D0 detector at the Fermilab Tevatron ppbar collider at a center-of-mass energy sqrt(s)=1.96 TeV. Photons are reconstructed in the central rapidity region |y_gamma|<1.0 with transverse momenta in the range 30<Pt_gamma<400 GeV while jets are reconstructed in either the central |y_jet|15 GeV. The differential cross section d^3sigma/dPt_gamma dy_gamma dy_jet is measured as a function of Pt_gamma in four regions, differing by the relative orientations of the photon and the jet in rapidity. Ratios between the differential cross sections in each region are also presented. Next-to-leading order QCD predictions using different parameterizations of parton distribution functions and theoretical scale choices are compared to the data. The predictions do not simultaneously describe the measured normalization and Pt_gamma dependence of the cross section in any of the four measured regions.Comment: 13 pages, 10 figure

    Forward modeling of collective Thomson scattering for Wendelstein 7-X plasmas: Electrostatic approximation

    Get PDF
    In this paper, we present a method for numerical computation of collective Thomson scattering (CTS). We developed a forward model, eCTS, in the electrostatic approximation and benchmarked it against a full electromagnetic model. Differences between the electrostatic and the electromagnetic models are discussed. The sensitivity of the results to the ion temperature and the plasma composition is demonstrated. We integrated the model into the Bayesian data analysis framework Minerva and used it for the analysis of noisy synthetic data sets produced by a full electromagnetic model. It is shown that eCTS can be used for the inference of the bulk ion temperature. The model has been used to infer the bulk ion temperature from the first CTS measurements on Wendelstein 7-X

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
    corecore