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Optimal Combinable and Dedicated Energy Crop Scenarios for Marginal Land 1 

Abstract: 2 

Modern biomass energy sources account for less than 2% of primary world energy supplies while major economies 3 

have enabled legislation that aims to increase bioenergy production.  In response to controversies over first 4 

generation biofuel, it has been argued that ‘marginal land’ should be used to produce dedicated energy crops (DECs).  5 

However, defining marginality of agricultural land is complex, and moreover, DECs would have to out-compete 6 

current agricultural production in these areas.  Utilising a bio-economic farm-level modelling approach we 7 

investigate the impact that crop yield penalties resulting from production in marginal land contexts have on 8 

financially optimal farm-level crop plans.   Where farm businesses choose to de-invest in own farm machinery, yield 9 

reductions of less than 10% for winter wheat result in a financially optimal switch to 100% miscanthus production.   10 

By contrast, in the presence of own farm machinery, winter wheat yield penalties of 30% are required before 100% 11 

miscanthus production is financially optimal.   However, under circumstances where DECs also suffer yield penalties 12 

on marginal land, the financially optimal crop mix includes combinable crops.  The results demonstrate that the 13 

optimal crop mix is dependent upon the relative combinable and DEC yields, together with farm-level decisions 14 

towards machinery ownership.   The focus of much policy attention relating to production of DECs on ‘marginal land’ 15 

is therefore argued to be incomplete.  Policies which encourage farmers to de-invest in own farm machinery, or 16 

incentivise the purchase of specific DEC machinery, may play an important role in assisting the development of DEC 17 

production. 18 

 19 

 20 

Corresponding author email: paul.wilson@nottingham.ac.uk 1. Introduction 21 

The need to achieve new and renewable sources of energy to secure sustainable energy futures has been well 22 

documented [1,2].  Legislation and policy incentives have been put in place in a number of developed countries and 23 

regions, including the USA [3] and Europe [4] which aim to increase energy supplies and achieve reductions in 24 

greenhouse gas emissions to mitigate climate change effects.  While global energy supplies continue to be 25 
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dominated by fossil fuels (accounting for 80% of primary energy supply; [2]), energy from renewable sources is 26 

increasing, driven by governmental incentives and technological advancement across a number of areas including 27 

solar, wind and bio-based energy supplies [1].  However, renewable energy still represents a modest contribution to 28 

overall energy supplies (3.8%; [1]) with modern biomass (wood and forest residues, agricultural crops and wastes 29 

and urban residues) specifically accounting for less than 2% of primary energy [2].  These data are set against 30 

projections that bioenergy could potentially account for 15% of global primary energy supply by 2050 [5].  Bioenergy 31 

was initially hailed as a ‘green’ solution to energy needs, particularly in the context of the early 2000s, when global 32 

food prices were at relatively  low levels [6]; however, controversy over the use of land for bioenergy quickly 33 

surfaced (the ‘food vs. fuel’ land-use debate, see [7]).  More recently discussion on bioenergy production has placed 34 

increased emphasis on co- or waste bio-products and use of lower-grade or marginal land with the intention of 35 

limiting the food production effects of bioenergy production [13]. 36 

Within the land-use debate the word marginal, in relation to land, occurs frequently and often encompasses a wide 37 

range of definitions. In the UK “marginal land” has been defined as land unsuitable for food crops [8; 9; 10], land 38 

where food crop production will be lower than average [9], land that is economically marginal [11; 9] and land that 39 

has low agricultural or biodiversity value [8]. Gopalakrishnan et al. (2011)[12] noted that in most cases “marginality 40 

is defined or implied as relative to the agroeconomic profit that could be derived by growing a major crop”. Given the 41 

range of definitions within the literature it can be difficult to determine the amount of marginal land, and the 42 

potential this land can be put to, within the UK. Currently there are no UK or EU policies that include a definition of 43 

marginal land with respect to agricultural land use for food and bioenergy production possibilities.  44 

The use of marginal land for growing dedicated energy crops (DECs) has been suggested numerous times [8;13;14] 45 

and has been incorporated, using different definitions, into various estimates for the amount of these crops that can 46 

be grown in the UK. Lovett et al. (2009)[15] estimated that there was 362,859ha of ‘lower grade’ land available in 47 

England to grow miscanthus taking into account a range of agricultural and yield considerations. More recently, 48 

Lovett et al. (2014) [16] have suggested that there is 1.4 M ha of grade 4 and grade 5 land available in the UK for 49 

perennial energy crops.  Bauen et al. (2010) [17], using maps of agricultural land quality, DEC yield maps and current 50 

land use data, estimated that  248.4kha of miscanthus and 389.1kha of SRC could be grown in England and Wales.  51 

These estimates are much lower than Haughton et al.’s (2009) [18] estimate that 3.1Mha of DECs could be grown in 52 
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England. Other research has estimated that 3.4Mha of arable and grassland will be available for biomass crop 53 

production in the UK in 2030 [19]. However, drawing upon a survey of arable farmers in England, Glithero et al. 54 

(2013)[20] noted that farmers would be potentially willing to respectively grow 50,700ha and 89,900ha of SRC and 55 

miscanthus under the assumption that those farmers willing to consider growing DECs would convert 9.29%1 of their 56 

utilised agricultural land to DECs. The most recent official data for England shows that only 2600 ha of SRC and 7000 57 

ha of miscanthus are grown [22]. 58 

In addition to area considerations, production estimates for DECs must take into consideration variability of DEC 59 

yields [23;24;25]. Richter et al. (2008)[26] noted that there was a strong correlation between miscanthus yields and 60 

water availability, with the crop losing up to 40% of its yield in drought conditions.  SRC has also been found to be 61 

susceptible to drought conditions [27].  However, the relative potential between the productivity of DECs and other 62 

land uses are generally not considered. It is often assumed that while yields of arable crops will be reduced on 63 

marginal land,  DECs grown in the same conditions will not suffer yield penalties, or not suffer penalties to the same 64 

extent as arable crops [17]; these differential yield impacts have further strengthened calls for DEC production on 65 

marginal land (e.g. [15;28]).  The validity of the assumption that DECs do not suffer yield penalties on marginal land 66 

is central to analysis of DEC production prospects, given the potential for this land to be used for food crops; 67 

furthermore, lower yielding food crops may be financially preferable to DECs that do not suffer yield penalties.  68 

Moreover, land that is unsuitable for arable related machinery is also likely to be unsuitable for machinery required 69 

for growing and harvesting DECs [17].  70 

It is clear that DECs on any agricultural land will have to compete with other established agricultural uses and that 71 

typically this will be combinable arable cropping or livestock farming (root crops, such as potatoes and sugar beet, 72 

have relatively high margins). In a French modelling study of farmers’ adoption of switchgrass and miscanthus 73 

Bocqueho and Jacquet (2010)[29] found that these DECs were generally less profitable than conventional arable 74 

rotations, albeit that DECs could be competitive diversification crops if appropriate contracts were offered. 75 

Alexander and Moran (2013)[30] accounted for farmer risk aversion with respect to perennial crop selection and 76 

identified that small variations in arable crop yields could have significant impacts on optimal crop mix at the farm 77 

level. The variable nature of the potential returns from DECs and the different characteristics of energy crops, can 78 



4 
 

also affect crop mix decision making; for example, Glithero et al. (2013)[20] found that miscanthus was more 79 

attractive to English arable farmers than SRC. 80 

Bio-economic farm models (BEFMs) are often used to analyse potential farmer behavioural responses to new 81 

technologies and crops.  Jannsen and van Ittersum (2007)[31] noted that there are two types of BEFM, empirical 82 

(constructed from data to extrapolate future behavioural outcomes) and mechanistic (drawing on existing 83 

knowledge and theory of agricultural practices, and simulating future behaviour from this). Jannsen and van Ittersum 84 

argue that empirical models, by their nature, should not be used to model structural change in farm businesses as 85 

such models are bound by their assumptions and datasets and therefore cannot easily deal with alternative farm 86 

systems or technologies. Mechanistic models can be used to model structural changes in a farm business, such as 87 

the adoption of bioenergy cropping and the potential removal of on farm assets, if allowance for these is made in 88 

the model assumptions and development.  The Silsoe Whole Farm Model [32] includes options to examine different 89 

machinery and labour criteria within a farm business to assess potentially optimal cropping and business scenarios 90 

under alternative resource use implications; as such, structural changes in the farm business can be investigated 91 

using this mechanistic model. However, with the above notable exception, previous research drawing upon farm-92 

level optimisation modelling approaches tends to assume that the farm has a set of fixed resources available, 93 

including labour and machinery, and that farmers will choose an optimal crop plan given this resource availability at 94 

the outset.  Some models allow for a combination of own on-farm labour and machinery availability, supplemented 95 

by contract service possibilities once the on-farm resources are fully utilised within a particular crop activity period 96 

(e.g. [33;34]).  Other models have examined optimising farm-level mechanisation per se.  [35], noting the importance 97 

of labour as a key constraint.  Less explicit approaches to capturing the impact of fixed resource constraints have 98 

assumed labour and machinery are totally divisible [36], effectively representing a ‘contracting only’ scenario.  99 

Alexander and Moran’s (2013)[30] farm model builds upon Sherrington and Moran’s (2010)[37] model, and as noted, 100 

investigated bioenergy cropping potential within the context of risk averse farmers in the UK. The model included 101 

contract and on-farm machinery options, with all crop operations charged at contract rates, albeit that farmers 102 

would in general use own machinery before considering contracting - an explicit assumption in Sherrington and 103 

Moran’s (2010)[37] earlier model.    Hence, while previous work has assumed a range of different approaches to 104 

capturing fixed resource, there is a paucity of approaches that examine the impact of different fixed farm–level 105 
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resource endowments on optimal production plans.  We hypothesise that including or excluding the presence of 106 

own farm machinery will arguably lead to potentially very contrasting optimal business and cropping strategies, 107 

particularly when examining potential crop switching from annual combinable arable crops to perennial DECs.   108 

The aim of this paper is to explore the farm scale effects of relative arable and DEC crop yield reductions scenarios 109 

representing production on marginal land, and to investigate the influence of the presence or absence of on-farm 110 

machinery in these scenarios. The simulation model used is briefly outlined in section 2.1 followed by the alterations 111 

to this model to incorporate DECs in section 2.2. The assumptions and methodology for the yield penalty scenarios 112 

are shown in section 2.3. The results from these scenarios are shown in section 3, followed by a discussion in section 113 

4. Overall conclusions from the modelling work are presented in section 5. 114 

2. Method 115 

To investigate the impact that crop yield penalties have on optimal crop mix given conventional cropping and DEC 116 

possibilities, a modelling approach was adopted. An existing model of combinable crop possibilities, the Managing 117 

Energy and Environmental Trade-offs in Agriculture (MEETA) model [34], was adapted to include DECs (miscanthus 118 

and SRC) and marginal land by constructing a series of reductions to the standard crop yield figures in the original 119 

model and the yields for the newly introduced DECs. The original MEETA model is briefly outlined in section 2.1, the 120 

characteristics of DEC and the method for incorporating DECs into the MEETA model is outlined in section 2.2, and 121 

the method for simulations of crop yield reduction is outlined in section 2.3.  122 

2.1 Overview of the MEETA Model 123 

The MEETA model combines bio-economic modelling and LCA approaches.  The model was designed to investigate 124 

the trade-offs between energy, emissions and finances at the farm level in England, with a specific emphasis on 125 

cereal straw production as a feedstock for bioenergy [34]. The MEETA model is a linear programming optimization 126 

model that uses a single year time-frame to represent multi-year cropping and rotational aspects typically observed 127 

in arable production.  The original MEETA model is parameterised for common combinable crops typically found on 128 

cereal farms in the UK; winter wheat (first [WW], second [SWW] and continuous [CWW]), winter oilseed rape [OSR], 129 

winter field beans [WFB], winter [WB] and spring barley [SB]. The model takes the input and output parameters for 130 

these crops; seed, fertilisers, crop protection, crop machinery and labour operations, grain drying requirements, 131 
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diesel used by machinery during crop operations, individual output yields of grain and straw, contract costs for 132 

machinery, plus energy used and generated, and greenhouse gas [GHG] emissions associated with inputs and 133 

outputs. The outputs that can be generated from the model include the optimal crop areas, the farm gross margin 134 

[GM], the GHG emissions, and net energy generated from the farm.  The MEETA model can be optimised for 135 

maximum farm GM, maximum net energy, or minimum GHG emissions.  Full details of the original MEETA model and 136 

the data that parameterises the model are presented in [34] and hence are not reproduced here; however it is 137 

important to note that the MEETA model represents contemporary agricultural practice and the structure of the 138 

model facilities both modular development and sensitivity testing in order to establish the level of confidence 139 

associated with the results generated.  The following sections describe the additional developments and features 140 

embedded within the MEETA model within this paper. 141 

2.2 DECs of SRC and Miscanthus production characteristics and their inclusion in the MEETA model 142 

SRC willow and miscanthus were not included in the original MEETA model [34].  This section outlines the production 143 

and policy factors associated with DECs and their inclusion into the modelling framework to generate an extended 144 

MEETA model.  145 

SRC willow is a perennial crop that requires a two year establishment period; during this time frame, a range of 146 

activities are required, including drawing upon labour and machinery resources and the variable costs of production 147 

incorporating crop establishment and management; appendix A details the data that is additionally incorporated 148 

into the MEETA model reflecting commercial practice. The crop is established by the planting of SRC willow cuttings 149 

at a density of 15,000 cuttings per hectare [31;32]. Following the establishment phase the crop is harvested 150 

triennially.  During each three year cycle, fertiliser and herbicide are required in one of these three years.   A typical 151 

output from SRC under UK conditions is 35 odt (oven dried tonnes) per hectare (ha) every three years [39].  In 152 

addition, a herbicide application is required to remove the crop at the end of its 30 year lifespan: during this 30th 153 

year the land cannot be used.  Overall, the establishment and removal of SRC therefore takes a total of three years 154 

of the 30 year lifespan. 155 

In contrast to SRC willow, miscanthus does not require a final removal phase, but does require a two year 156 

establishment period out of a total 20 year lifespan.  Establishment typically requires the application of four 157 
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herbicides, but no fertiliser. Establishment also requires a number of crop operations (also detailed in appendix A) to 158 

enable the planting of miscanthus rhizomes at a density of 14,000 per hectare [39;40]. Following the two year 159 

establishment phase the crop can be harvested annually, requiring an annual application of fertiliser. Typical output 160 

from miscanthus under UK conditions is 13 odt/ha annually [39]. Details of the machinery used, frequency and 161 

timing of each crop operation, energy use, GHG emissions, costings and literature sources are detailed for SRC and 162 

miscanthus in Appendix A.  163 

In England, farmers have until recently been able to apply for a grant to cover 50% of the establishment costs 164 

associated with SRC and miscanthus, provided they grow more than three hectares of either crop, and the crop 165 

output is used for second generation biofuels, heat, combined heat and power; or power generation [41]. The 166 

allowed establishment costs can include the actual costs (suppliers, materials and contracting costs) and any on-farm 167 

costs (use of own machinery where applicable) [41]. In the model, the establishment grant is included as 50% of the 168 

respective contracted machinery costs of SRC and miscanthus planters (this specialist machinery is typically 169 

contracted in with associated labour), the diesel costs for these machines (fuel is separately accounted for the 170 

MEETA model), and the respective costs of the miscanthus rhizomes and SRC cuttings.  171 

The MEETA model was designed for an annual combinable cropping scenario; the inclusion of DECs into the MEETA 172 

model requires that the long term nature of these crops is captured as a single year representation of the activities 173 

and outputs over the full time that the crop is in the ground. This is achieved by accounting for the establishment, 174 

crop production and harvesting, and crop removal phases over the given perennial crop’s lifespan as an average one-175 

year representation.  176 

2.3 Estimating Financially Optimal Crop Mixes given DEC and Combinable Crop Possibilities including Sensitivity 177 

Testing 178 

In order to test the impact of combinable crop yield penalties resulting from production of these crops on ‘marginal 179 

land’, two assumptions were investigated as detailed below.   In addition, the extended MEETA model was run with 180 

and without own on-farm machinery, to test the sensitivity of optimal results under different farm resource 181 

scenarios that may be encountered by farmers considering DEC production (the MEETA model can buy in contract 182 

machinery where needed).  In order to ensure tractability of the model runs, the original inclusion of WFB in the 183 
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MEETA model was removed on the basis that OSR represents the main break crop grown in combinable cropping 184 

scenarios in England, and WFB accounted for only 1.9% of arable land in England in 2011 [42].  In addition to testing 185 

for sensitivity in relation to on-farm machinery ownership, the sensitivity of the MEETA model was tested via 186 

incremental changes in the relative yields of the crops within the model, in order to establish the threshold relative 187 

yields where optimal crop mix changes.  188 

 2.3.1 Assumption 1: Marginal Land leads to Reductions in the Yield of Combinable Crops only.   189 

It has been suggested that DECs can be grown on marginal land where combinable crops would suffer yield losses or 190 

be unsuitable. To test this assumption, yields of the combinable crops were reduced individually, and in 191 

combination, from 100% of their base-line model yields, to 0%, in increments of 10%. Further detail in model output 192 

was captured by decreasing the increment step size (to 1%) over appropriate yield reduction ranges, to show where 193 

optimal crop mix changes occurred.  For each incremental yield reduction step, the model was run to obtain 194 

financially (GM) optimal crop areas, GM, net energy, and GHG emissions (carbon dioxide, nitrous oxide, methane 195 

and carbon dioxide and total greenhouse gas emissions) metrics.   196 

2.3.2 Assumption 2: Marginal Land leads to Reductions in the Yield of both Combinable Crops and DECs.  197 

The second assumption tested is that SRC and miscanthus are also subject to yield penalties on marginal land, in 198 

addition to yield penalties for combinable crops. This is investigated by holding the reductions of the combinable 199 

crops at the common yield reductions for all combinable crops (i.e. for a 10% yield reduction in WW, all other 200 

combinable crops are assumed to incur a 10% yield reduction); the yields of the DECs are then reduced in increments 201 

of 10% to calculate the optimal cropping patterns under different yield penalty scenarios.  202 

2.3.3 With and without own on-farm machinery 203 

If farmers were to consider growing large areas of DECs then it is possible that they would seek to undertake large 204 

scale structural changes of their business. One typical scenario would include the sale of their own on-farm 205 

machinery, choosing in contrast to buy in contract labour and machinery to perform crop activities. The MEETA 206 

model was therefore run: i) with, and ii) without, own on-farm machinery to investigate the impacts of the presence 207 

or absence of own on-farm machinery on the optimal crop mix, GM, GHG emissions and net energy metrics. Running 208 
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the MEETA model with and without own on-farm machinery provides information on whether the presence or 209 

absence of own on-farm machinery results in optimal crop mix changes at different yield reduction penalty points.   210 

3. Results 211 

3.1 Assumption 1: Yield Reductions in Combinable Crops, without own on-farm machinery 212 

The initial model runs showed that given wheat (WW, SWW, CWW) yields at 100% of base-line, reducing WB and SB 213 

yields does not influence optimal crop mix.  Under the above assumptions, optimal crop mix is 50%:50% WW:OSR, 214 

given OSR yields at 100% of their base-line yields.  When OSR yields are set to 90% of their base-line yields, a 215 

homogeneous crop pattern of CWW is optimal.  Given WW yield at 90% of base-line, reducing SB yields once again 216 

makes no difference to optimal crop mix under 100% base-line yields for OSR and WB.  Given WW at 90% base-line 217 

yield, and WB and OSR at 100% base-line yields, the optimal crop mix is a third each of WW:WB:OSR.  However, with 218 

wheat yields at 90% of base-line and given a reduction in the yields of WB or OSR below 100% of base-line yields (as 219 

captured by setting WB and OSR yields at 90%), the optimal crop mix is 100% miscanthus. 220 

Given that the switch from combinable cropping into a homogenous cropping pattern of miscanthus occurs between 221 

100% and 90% of the base-line yields of WW, WB and OSR, the yield of combinable crops over the 100% to 90% 222 

region were investigated in further detail using 1% incremental yield penalty steps. This resulted in a slightly wider 223 

variety of optimal crop mixes occurring, and highlighted specific yield penalty points where the switch between 224 

crops occurred.  Four crop mixes were seen in the larger, 10% yield penalty scenarios.  In the smaller, 1% yield 225 

penalty scenarios, a further optimal crop mix of WW, SWW and OSR occurs given WW yields between 97% and 99% 226 

of base-line yields; SB yield penalties again make no difference to the optimal crop mix.  Note that miscanthus enters 227 

the optimal crop mix when WW yields are at 97% of base-line.  The range of crop mixes and frequency of occurrence 228 

is presented in Figure 1. An optimal cropping of 100% miscanthus occurs in 91% of the simulation runs where 229 

combinable crop yields are reduced in increments of 10% (from 100% to 0%) and in 49% of the runs where 230 

combinable crop yields are reduced in increments of 1% (from 100% to 90%).  231 

  232 
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 233 

Figure 1: Optimal crop mixes and frequency of occurrence under assumption 1 without own on-farm machinery (frequency on the x axis). The 234 
left plot represents the results from the reduction in yield from 100% to 0% in increments of 10%.  The right plot represents the results from 235 
the reduction in yield from 100% to 90% in increments of 1%.   In each plot the percentage area given to each of the 4 crops is shown on the 236 
left-hand axis with the number of times that the crop mix occurs in the 14,561 simulation runs shown on the right-hand axis and on the x axis 237 
labels. Misc20 is 20 year miscanthus, wosr is winter oilseed rape, wbar is winter barley and wheat is winter wheat 238 

 239 

The GM, net energy, and GHG emissions from the farm alter as the optimal cropping pattern changes. The base-line 240 

yield GM is £174,500.  However, when combinable crop yield penalties lead to 100% miscanthus being optimal, the 241 

farm GM falls to £149,500, a decrease of 14% from base-line. Concurrently there is an increase of 227% in the net 242 

energy from 25,990GJ, with 100% combinable crop yields, to 84,860GJ with 100% miscanthus.  Additionally, a 68% 243 

decrease in total GHG emissions occurs from 1,744,560 tCO2eq, under the 100% combinable crop yields base-line, to 244 

565,050 tCO2eq with 100% miscanthus. The above results for the GM and net energy represent the maximum and 245 

minimum values across all yield penalty scenarios examined.  However, the GHG emissions extend from 1,764,550 246 

tCO2eq under a crop mix of a third each of WW:WB:OSR, to 565,050 tCO2eq under 100% miscanthus. 247 

3.2 Assumption 1: Yield Reductions in Combinable Crops, with own on-farm machinery 248 

Given the presence of own on-farm machinery, a wide variety of optimal crop mixes are observed under different 249 

yield penalty scenarios.  While WW yields remain at 100% of base-line, no miscanthus or SRC enters the optimal crop 250 

mix.  However, given WW yields at 90% of base-line, miscanthus enters the optimal crop mix, albeit that a reduction 251 

in WW yields to 70% of base-line yield values is required before 100% miscanthus is optimal. The key difference 252 

between the without own on-farm machinery, and with own on-farm machinery simulations, is that given the 253 
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presence of own on-farm machinery, optimal crop mixes which contain DECs alongside combinable crops occur 254 

more frequently than in the absence of own on-farm machinery, where typically complete switching between 255 

combinable cropping and miscanthus occurs, Figure 2. An optimal cropping of 100% miscanthus occurs in 58% of the 256 

simulation runs, and by contrast, a 100% continuous WW optimal crop plan occurs in 7% of simulations; overall 257 

miscanthus appears at some level in 85% of the simulation runs. 258 

 The GM, net energy and GHG emissions from the farm alter as the optimal cropping pattern changes.  The GM 259 

decreases from £285,780 at 100% base-line yields, to £177,770 when yield penalties lead to 100% miscanthus 260 

production being optimal; a decrease of 38% in GM. Concurrently there is an increase of 230% in the net energy 261 

produced from 25,730GJ at 100% base-line yields, to 84,860GJ with 100% miscanthus crop production.  Moreover, a 262 

68% decrease in total GHG emissions occurs from 1,767,140 tCO2eq under the 100% base-line yield scenario, to 263 

565,050 tCO2eq, given 100% miscanthus. Therefore, the GM ranges between £177,769 and £285,780, net energy 264 

ranges between 19,640GJ to 84,860GJ, and GHG emissions range between 565,050 tCO2eq and 1,767,140 tCO2eq.  265 

In order to compare the GM from the ‘with’ and ‘without’ own on-farm machinery scenarios, it is necessary to 266 

account for deprecation and other costs of utilising own on-farm machinery, in contrast to complete contract service 267 

utilisation.  For the 400ha farm modelled with own on-farm machinery, machinery depreciation and associated costs 268 

of £137,000 must be deducted from the GM, resulting in an ‘adjusted GM’  that ranges between £148,780 and 269 

£40,770, for 100% base-line yields leading to combinable cropping, and 100% miscanthus production, respectively.  270 

This is a reduction in 73% in ‘adjusted GM’ as the optimal crop mix changes to 100% miscanthus production.  271 

Comparing this with the scenario where all machinery is contracted, these’ adjusted GM’ figures are lower than the 272 

GM achieved with only using contractors. 273 
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 274 

Figure 2: Optimal crop mixes and frequency of occurrence under assumption 1 with own on-farm machinery (frequency on the x axis).   The percentage area given to each of the 4 crops is shown on the left-hand 275 
axis with the number of times that the crop mix occurs in the 14,561 simulation runs shown on the right-hand axis and on the x axis labels. Misc20 is 20 year miscanthus, wosr is winter oilseed rape, wbar is 276 
winter barley, sbar is spring barley and wheat is winter wheat. Note that the 100% misc20 cropping scenario occurs in 8489 of the simulation runs which exceeds the y axis limits.277 
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3.3 Assumption 2: Reductions in yields of combinable crops and DECs, without own on-farm machinery 278 

Given all combinable crop yields at 90% of base-line, 100% miscanthus is the optimal crop mix.  However, given yield 279 

penalties on DECs, in addition to combinable crop yield penalties, it is necessary to re-test for optimal crop mixes.  280 

With combinable crop yields at 90% of base-line, 100% miscanthus production remains optimal until the miscanthus 281 

yield is reduced to 80% of base-line yield.  At this yield penalty level, the optimal crop mix returns to combinable 282 

cropping of 50%:50% WW:OSR; reducing the yield of SRC does not alter the optimal crop mix. Given yields of the 283 

combinable crops at 80% of base-line, optimal crop mix alternates between 100% SRC, 100% miscanthus and 284 

50%:50% WW:OSR, depending on the yield reduction penalties assumed for miscanthus and SRC; this observed 285 

optimal crop mix ‘switching’ occurs when the miscanthus yield is 60% of base-line or lower, and the SRC yield is 70% 286 

of base-line or lower. Given yields of the combinable crops at 70% of base-line, optimal crop mix alternates between 287 

100% SRC, 100% miscanthus and a third each of WW:SWW:OSR, depending on the yield reduction penalties 288 

assumed in miscanthus and SRC.  The crop mix combination of WW, SWW and OSR occurs given miscanthus yields of 289 

40% of base-line or lower, and SRC yields of 50% of base-line or lower. Given combinable crop yields at 60% of base-290 

line or lower, optimal crop mix alters between 100% miscanthus and 100% SRC, depending on the relative yields of 291 

these two crops; however, given the 60% combinable crop yield penalties, the optimal crop mix never includes 292 

combinable crops, with the optimal outcome being no crop production of any kind, in preference to making a GM 293 

loss, Figure 3. With combinable crop yields at 90% of base-line, miscanthus yield at 80% and SRC yields at 100% 294 

when there is no on-farm machinery the optimal crop mix is 100% combinable cropping: if combinable crop yields 295 

are reduced to 80% (holding other crop yields at previous levels) then the mix changes to 100% SRC. If the SRC yield 296 

is then reduced (crop yields being 80% for combinable crops, 80% for miscanthus and 90% for SRC) then the crop mix 297 

shifts to 100% miscanthus. 298 

The GM varies between £149,470, given 100% miscanthus base-line yield and combinable crops at 90% of base-line 299 

yields, and £0 when no crops are produced. The net energy varies between 84,861GJ and 0GJ, the former occurring 300 

given 100% miscanthus production at 100% base-line yields, and the later when there is no cropping. The GHG 301 

emissions vary between 1,739,072 tCO2eq and 0 tCO2eq, the former occurring when the optimal crop mix is 100% 302 

combinable crops, and the latter under a no cropping scenario.  303 
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Figure 3: Crop mixes seen under assumption 2, with and without on-farm machinery. Combinable crops are all held at the same yield reduction 304 
and then the DEC yields are altered. The resultant cropping mixes are shown here. If only combinable crops are grown this is shown as 100% 305 
combinable crops. If only miscanthus is grown then this is 100% miscanthus. If miscanthus and combinable crops are grown this is shown as 306 
100% combinable crops and miscanthus. There are 1210 simulations for each of the machinery scenarios. 307 
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3.4 Assumption 2: Reductions in yields of combinable crops and DECs, with own on-farm machinery 308 

Given the presence of own on-farm machinery, combinable crop yields have to fall below 90% of base-line yield 309 

before DECs enter the optimal crop mix, Figure 3. Where miscanthus yields are 90% of base-line, or higher, then SRC 310 

is not produced, and depending on the combinable crop yield penalties, optimal crop mix graduates between 100% 311 

combinable crops and 100% miscanthus. Below 80% of miscanthus base-line yield, SRC willow enters the optimal 312 

crop mix, in increasingly large amounts, as the miscanthus yield decreases. Given miscanthus yields of at least 20% of 313 

base-line yields, the land is cropped with combinable crops, miscanthus or SRC.  When the miscanthus yield is 314 

reduced below the 20% of base-line yields, combinable crop yields are 40% of base-line or below, and SRC yields are 315 

less than 50% of base-line yields, the optimal farm plan is to not produce any crops.  316 

The GM varies between £231,601, given a 100% combinable crop mix at 90% base-line yields, and £0 when no crops 317 

are produced. The net energy varies between 84,860GJ, given optimal cropping of 100% miscanthus, and 0GJ, when 318 

no crops are produced.  The GHG emissions vary between 1,761,300 tCO2eq under a 100% combinable cropping 319 

scenario, and 0 tCO2eq, when no crops are produced. 320 

4. Discussion 321 

Modern biomass in the early part of the 21st century accounts for less than 2% of world energy supply [2]. Set against 322 

this, some authors projects that bioenergy will account for 15% of energy supply by 2050 [5]. The discrepancy clearly 323 

signals that we need greater understanding of what drives land use change at the farm-level; indeed we would argue 324 

that this understanding is a necessary condition if we are to put increased bioenergy production on a sustainable 325 

pathway.  Within the UK context, previous studies have typically estimated aggregate level impacts or potential for 326 

the production of DECs [15,16,17,18,19,20] producing estimates that range from 140k ha [20] to 3.4m ha [19] 327 

against current production levels of less than 10k ha [22].  However as identified by Glithero et al. (2013) [20], 328 

Bocqueho and Jacquet (2010) [29] and Alexander and Moran (2013) [30], farm-level drivers, relative crop 329 

profitability and variation in relative crop yields can lead to significant impacts on optimal farm-level cropping plans.  330 

Our results reinforce Alexander and Moran’s (2013) [30] finding that changes in relative crop yield have a substantial 331 

influence on optimal cropping.  In addition, the results presented above indicate that strategic farm-level decision 332 

making with respect to the level of on-farm machinery owned by the business will have a substantial impact on both 333 
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overall optimal cropping decisions and the potential flexibility of crop choice over time.  UK policy incentives to 334 

increase the area of DECs have thus far not led to large scale increases in DEC areas in the UK.  The results presented 335 

above therefore provide novel policy messages for those seeking to incentives DEC production; we develop this idea 336 

further below.  337 

Modelling a farm business scenario in the absence of own farm machinery shows that only modest combinable crop 338 

yield reductions are required to result in a financially optimal cropping switch to 100% miscanthus production, 339 

assuming miscanthus does not suffer a yield penalty.  Specifically, with winter wheat yields at 90% of baseline and 340 

winter barley and oilseed rape at less than 100% baseline yields, the financially optimal miscanthus only cropping 341 

strategy represents a gross margin reduction from baseline of 14%, with an increase of 227% in net energy produced 342 

from the farm, and a decrease in GHG emissions of 68%.  Hence, where farmers have de-invested in own farm 343 

machinery, growing conditions which result in modest yield reductions in combinable crops lead to large scale 344 

changes to financially optimal cropping plans, with substantial net energy and GHG emissions improvements.  345 

However, in the presence of own farm machinery, winter wheat yield penalties equivalent to 70% of baseline are 346 

required before 100% miscanthus becomes financially optimal, albeit that miscanthus enters the crop mix in lower 347 

percentages when winter wheat yields are set to 90% of baseline; hence given own farm machinery a more 348 

graduated introduction of miscanthus occurs as combinable crop yields are reduced, in comparison to the whole-349 

sale changes to optimal crop mix observed under the without own farm machinery scenario.    350 

However, the modest yield reductions in combinable cropping that lead to large switching to miscanthus assumes 351 

that miscanthus will not suffer yield penalties under these conditions.  Under sensitivity testing for yield reductions 352 

in DECs, when yield penalties for miscanthus are observed, combinable crops re-enter, or increase in magnitude, in 353 

the rotation.  Only under circumstances when yield reductions are assumed for both combinable crops and 354 

miscanthus does SRC (without yield reduction) enter the optimal crop mix under both the presence and absence of 355 

own farm machinery scenarios.  Given an absence of own farm machinery, the financially optimal cropping plan 356 

contains either: i) combinable crops, ii) miscanthus or ii) SRC; however, the flexibility introduced from not owning 357 

farm machinery leads to these three crops types not being jointly present in any proportion as optimal switching 358 

occurs across the whole farm area; such an approach to 100% cropping of DECs will however be incompatible with 359 

future Common Agricultural Policy (CAP) cross compliance restrictions in that it will result in financial penalties [43].  360 
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Given the presence of own farm machinery a more graduated cropping pattern occurs as relative crop yield penalties 361 

are assumed, and typically the optimal crop mix contains a more varied cropping pattern across the farm.  The 362 

results that demonstrate miscanthus is the optimal DEC choice, given combinable crop yield penalties, reinforces 363 

Glithero et al.’s (2013) [20] findings that interest in growing miscanthus is greater than interest in SRC production, 364 

albeit that only modest proportions of English arable farmers would consider growing either crop; miscanthus 365 

(17.2%) and SRC (11.9%).  In more extreme cases of reduced yields for all crop types, including reduced yields for 366 

DECs, the optimal model solution is to not crop the land;  given the absence of own farm machinery, non-cropping is 367 

optimal at more modest yield reductions than the yield reductions which lead  to abandoning cropping given the 368 

presence of own farm machinery. 369 

There is a lack of data that ties the yields of crops to the quality of land on which they are grown, especially in 370 

relation to DECs. A range of studies investigate the impact of management practices on both soil quality and crop 371 

yield combined but this is often carried out on agricultural land that is already used for food crops [44]. Alternatively, 372 

differences in crop yields between areas of different land quality are simulated in models to give yield maps [26;27]. 373 

The approach used in this paper is a more comprehensive and theoretical approach, in that all potential yield 374 

reductions for crops on marginal land in comparison to current arable farmland are included, so that precise yield 375 

reduction data is not initially needed in order investigate how cropping on marginal land could be affected by yield 376 

reductions. 377 

The results differentiate between optimal cropping plans under the presence and absence of own farm machinery. 378 

This approach is more comprehensive than BEFMs which either exclude the possibility of the use of contractors in 379 

production (akin to Søgaard and Sørensen, 2004 [35]) or only allow the use of contractors once own farm machinery 380 

resource has been fully utilised within a particular time-frame [33;34] and complements Annetts and Audsley’s 381 

(2002) [32] approach where different levels of machinery ownership can be examined.  While our approach explicitly 382 

tests for sensitivity of results with respect to relative yield (and hence financial return) variation that may exist, a 383 

number of potential caveats should be noted.  Specifically to ensure tractability of the MEETA model, we represent 384 

perennial cropping within a single-year time-frame and hence do not account for the dynamic variation in costs and 385 

revenues that flow from perennial crop production in contrast to annual crops.  In addition, our extension to the 386 

MEETA model draws upon input data which represents typical, contemporaneous (and therefore competing) 387 
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production alternatives, from standard farm management data sources; consequently within our approach we do 388 

not test for sensitivity of variation with respect to the input data, however in commercial practice and planning 389 

farmers and their advisors would typically draw upon the sources of data we utilise within our approach. 390 

Accepting the above caveats, we argue that our findings provide direct industry and policy relevance to those 391 

seeking to secure sustainable bioenergy pathways.  Previous work notes the need for policy makers seeking to 392 

incentivise DEC production via introduction of alternative policies to the establishment grant [20].  The results 393 

presented here suggest that while modest yield penalties in combinable crops will lead to financially optimal 394 

cropping plans that include DECs, the presence or absence of own farm machinery will be a key short term factor for 395 

farmers seeking to optimise financial returns.  Policies which therefore encourage farmers to de-invest in own farm 396 

machinery (e.g. reductions in capital gains tax, increased targeting of agricultural support to environmental 397 

stewardship activities involving non-cropped land), or incentivise the purchase of specific DEC machinery may 398 

therefore play an important role in assisting the development of DEC production. 399 

The focus of much policy attention of producing DECs on ‘marginal land’, while a necessary consideration for the 400 

future of DEC production, is argued here to be incomplete given that such analyses only consider one aspect of a 401 

complex mix of issues facing farmers and land managers with respect to production possibilities.  While previous 402 

work has identified the potential for particular geographic regions of the UK to be converted to DECs (e.g. Alexander 403 

et al (2013) [45], these do not take into account farmer attitudes towards DEC production, which has been 404 

highlighted by Glithero et al. (2013) [20] as of key importance.  Moreover, it is important for analyses to consider the 405 

asset fixity aspects that influence farmer decision making with respect to the introduction of DECs [46].  Specifically, 406 

the results presented herein highlight the contrasting financially optimal crop mixes observed under the presence 407 

and absence of own on-farm machinery, which have been demonstrated to have a greater impact on financially 408 

optimal DEC plans than the relative crop yield penalties that may result from production of combinable crops on 409 

marginal land.      410 

5. Conclusion 411 

While calls for the production of energy crops on marginal land have been repeatedly made, and provide a 412 

convenient policy message, farm-level decisions over the use of land are complex and dynamic.   We find that 413 

relative crop yield, machinery ownership decisions, the wider policy environment and farmer attitudes towards the 414 
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production of energy crops combine to influence the potential uptake of DEC production.  In order to incentivise the 415 

production of DECs further, government will need to develop more innovative policies which demonstrate a greater 416 

understanding of the complexities of farm-level decision making. These policies should also allow for the inevitable 417 

trade-offs that exist in promoting one type of production over competing alternatives, even where ‘marginal land’ 418 

has been identified as being suitable for bioenergy production.   419 
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Footnotes 520 

1 The area of set-aside in the UK as a percentage of arable area between 1996 and 2005 [21], 521 

 522 

Appendix A: 523 

A.1. Labour and Machinery Use:  524 

The machinery added to the model to perform the additional crop operations (Table A1) for the dedicated energy 525 
crops can be seen in   526 
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Table A2. The additional machinery incorporated into the MEETA model were treated in the same was as Glithero et 527 
al. (2012)[34]. Additional details relating to the machinery area available from the authors on request.  528 

Table A1: Work rates for field operations and the frequency of these for the dedicated energy crops. The number of operations for these crops 529 
taken from the best practice guides for these crops [38,40]. Work rates taken from Glithero et al. (2012)[34] and the ABC book [39]. 530 

 531 

 532 

 533 

 534 

 535 

 536 

 537 

 538 

 539 

 540 

 541 

 542 

  543 

 Field Operation hr ha-1 Miscanthus SRC 

Establishment 
& Removal (2) 

Harvest 
(1) 

Establishment 
& Removal (3) 

Harvest 
(3) 

Cultivations Plough (6 furrow) – 
heavy land 

1.18 1  1  

 Power harrow m – 
heavy land 

1.11 1  1  

 Subsoiling 3 leg - 
heavy land 

   1  

 Roll  0.71 1  1  

Planting Miscanthus 
planting machine 

1.10 1    

 SRC planting 
machine 

1.37   1  

Crop 
maintenance 

Spraying 24m 0.14 4  4 1 

 Fertilising - 
spinning 

0.17  1 1 1 

Crop harvest Miscanthus 
harvester (mower 
conditioner) 

0.36  1   

 SRC harvester 1.56    1 
 Baler (take to be 

same as straw one) 
0.5  1   

 Straw carting (2 
men tractor loader 
and trailers) 

0.5  1  1 
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Table A2: Farm machinery added to the MEETA model specifically for the dedicated energy crops. 544 

Machines Weight (kg) Diesel use (l 
h-1) 

Direct 
energy (GJ 
h-1) 

Indirect 
energy (MJ  
h-1) 

Direct 
emissions 
(kg CO2 eq 
h-1) 

Indirect 
emissions 
(kg CO2 eq 
h-1) 

Contract 
cost (£ h-1) 

SRC step 
planter 

1400   10.73  0.73 297.08 

SRC 
adapted 
forage 
harvester 

11560 56.5 2.08 371.4 183.71 
  

21.46 425.85 

Roller 1500   11.5  0.78  
Miscanthus 
precision 
planter 

4512   34.6  2.35 
 

347.53 

Miscanthus 
mower 
conditioner 

500   3.83  0.26 63.41 

 545 

A.2. Fertilisers: 546 

Due to the soil type included in the model applications of P and K for either crop are not required [40] although it is 547 
recommended that P and K levels in the soil are regularly checked. Miscanthus requires no applications of N during 548 
the establishment of the crop but it is recommended that 60 kg ha-1 of N is applied annually after this period [40] 549 
which has been included in the MEETA model despite the best practice guide stating that there is no yield response 550 
(at Rothamsted Research, UK) from N applications over 13 years of research. It is recommended that 30 kg ha-1 N is 551 
applied to SRC after the establishment although due to the difficulty of application during the growing period of the 552 
crop then this can be applied triennially as 90 kg ha-1 post harvest [47].  553 

 A.3. Pesticides: 554 

SRC and Miscanthus only need applications of herbicides [38;40]. The best practice guide for SRC [38] states that 555 
fungicides and insecticides are not recommended for a range of economic, practical and environmental reasons. 556 
Table A3 shows the number of pesticides applied to the DEC’s along with the costs and the embodied energy. 557 
Further details about the types of chemicals applied available on request from the authors.  The costs and energy for 558 
these chemicals are treated in the same way as Glithero et al. (2012) [34]. 559 

Table A3: Number of pesticides applied to miscanthus and SRC willow. 560 

  Miscanthusa SRC 

  Establishment & 
Removal 

Establishment & 
Removal 

Harvest 

Herbicides Chemicals 4 4 1 
 Cost 69.09 108.5 27.53 
 Energy 1249 2337 625 

a No chemicals are required during the harvest phase of the crop. 561 

A.4. Other inputs to the crops 562 

The planting rates for the two crops are taken from the best practice guides for these crops [38;40] and [39].  563 
Miscanthus rhizomes are planted at a density of 14,000 per hectare at a cost of 8.5p per rhizome [39].  SRC cuttings 564 
are planted at a density of 15,000 per hectare at a cost of 5p per cutting [39]. There is no data on the energy used to 565 
produce these cuttings and rhizomes and so no energy data for this was used in the model. 566 

 567 


