38 research outputs found
Flavour constraints on scenarios with two or three heavy squark generations
We re-assess constraints from flavour-changing neutral currents in the kaon
system on supersymmetric scenarios with a light gluino, two heavy generations
of squarks and a lighter third generation. We compute for the first time limits
in scenarios with three heavy squark families, taking into account QCD
corrections at the next-to-leading order. We compare our limits with those in
the case of two heavy families. We use the mass insertion approximation and
consider contributions from gluino exchange to constrain the mixing between the
first and second squark generation. While it is not possible to perform a
general analysis, we assess the relevance of each kind of flavour- and
CP-violating parameters. We also provide ready to use magic numbers for the
computation of the Wilson coefficients at 2 GeV for these scenarios.Comment: 23 pages, 14 figures; v3: matches published version (contains
improvements in the presentation and clarifications
Flavour and Collider Interplay for SUSY at LHC7
The current 7 TeV run of the LHC experiment shall be able to probe gluino and
squark masses up to values larger than 1 TeV. Assuming that hints for SUSY are
found in the jets plus missing energy channel by the end of a 5 fb run,
we explore the flavour constraints on three models with a CMSSM-like spectrum:
the CMSSM itself, a Seesaw extension of the CMSSM, and Flavoured CMSSM. In
particular, we focus on decays that might have been measured by the time the
run is concluded, such as and . We also analyse
constraints imposed by neutral meson bounds and electric dipole moments. The
interplay between collider and flavour experiments is explored through the use
of three benchmark scenarios, finding the flavour feedback useful in order to
determine the model parameters and to test the consistency of the different
models.Comment: 44 pages, 15 figures; v3: minor corrections, added references,
updated figures. Version accepted for publicatio
Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation
The current status of electric dipole moments of diamagnetic atoms which
involves the synergy between atomic experiments and three different theoretical
areas -- particle, nuclear and atomic is reviewed. Various models of particle
physics that predict CP violation, which is necessary for the existence of such
electric dipole moments, are presented. These include the standard model of
particle physics and various extensions of it. Effective hadron level combined
charge conjugation (C) and parity (P) symmetry violating interactions are
derived taking into consideration different ways in which a nucleon interacts
with other nucleons as well as with electrons. Nuclear structure calculations
of the CP-odd nuclear Schiff moment are discussed using the shell model and
other theoretical approaches. Results of the calculations of atomic electric
dipole moments due to the interaction of the nuclear Schiff moment with the
electrons and the P and time-reversal (T) symmetry violating
tensor-pseudotensor electron-nucleus are elucidated using different
relativistic many-body theories. The principles of the measurement of the
electric dipole moments of diamagnetic atoms are outlined. Upper limits for the
nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained
combining the results of atomic experiments and relativistic many-body
theories. The coefficients for the different sources of CP violation have been
estimated at the elementary particle level for all the diamagnetic atoms of
current experimental interest and their implications for physics beyond the
standard model is discussed. Possible improvements of the current results of
the measurements as well as quantum chromodynamics, nuclear and atomic
calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for
EPJ
Supersymmetry beyond minimal flavour violation
We review the sources and phenomenology of non-minimal flavour violation in
the MSSM. We discuss in some detail the most important theoretical and
experimental constraints, as well as promising observables to look for
supersymmetric effects at the LHC and in the future. We emphasize the
sensitivity of flavour physics to the mechanism of supersymmetry breaking and
to new degrees of freedom present at fundamental scales, such as the grand
unification scale. We include a discussion of present data that may hint at
departures from the Standard Model.Comment: 23pp. Version to appear in the EPJC special volume "Supersymmetry on
the Eve of the LHC", dedicated to the memory of Julius Wess. References and
brief discussion on collider signatures adde
Measurement of CP observables in B± â D(â)K± and B± â D(â)ϱ decays
Measurements of CP observables in B ± âD (â) K ± and B ± âD (â) Ï Â± decays are presented, where D (â) indicates a neutral D or D â meson that is an admixture of D (â)0 and DÂŻ (â)0 states. Decays of the D â meson to the DÏ 0 and DÎł final states are partially reconstructed without inclusion of the neutral pion or photon, resulting in distinctive shapes in the B candidate invariant mass distribution. Decays of the D meson are fully reconstructed in the K ± Ï â , K + K â and Ï + Ï â final states. The analysis uses a sample of charged B mesons produced in pp collisions collected by the LHCb experiment, corresponding to an integrated luminosity of 2.0, 1.0 and 2.0 fb â1 taken at centre-of-mass energies of s=7, 8 and 13 TeV, respectively. The study of B ± âD â K ± and B ± âD â Ï Â± decays using a partial reconstruction method is the first of its kind, while the measurement of B ± âDK ± and B ± âDÏ Â± decays is an update of previous LHCb measurements. The B ± âDK ± results are the most precise to date
Determination of gamma and-2 beta(s) from charmless two-body decays of beauty mesons
Using the latest LHCb measurements of time-dependent CP violation in the
B^0_s -> K^+K^- decay, a U-spin relation between the decay amplitudes of B^0_s
-> K^+K^- and B^0 -> \pi^+\pi^- decay processes allows constraints to be placed
on the angle gamma of the unitarity triangle and on the B^0_s mixing phase
-2\beta_s. Results from an extended approach, which uses additional inputs on
B^0 -> \pi^0\pi^0 and B^+ -> \pi^+\pi^0 decays from other experiments and
exploits isospin symmetry, are also presented. The dependence of the results on
the maximum allowed amount of U-spin breaking is studied. At 68% probability,
the value \gamma = ( 63.5 +7.2 -6.7 ) degrees modulo 180 degrees is determined.
In an alternative analysis, the value -2\beta_s = -0.12 +0.14 -0.16 rad is
found. In both measurements, the uncertainties due to U-spin breaking effects
up to 50% are included.Comment: updated to v2 with minor changes after journal revie
Petrology of the Luingo caldera (SE margin of the Puna plateau): A middle Miocene window of the arc-back arc configuration
We describe the petrographic characteristics, whole-rock geochemistry and mineral chemistry of rocks from the Pucarilla-Cerro Tipillas Volcanic Complex with emphasis on the rocks belonging to the middle Miocene Luingo caldera, located in the south-eastern portion of the Central Volcanic Zone (CVZ) of the Andes. We modelled the petrogenesis of the Luingo caldera rocks as a mixture of ca. 20% crustal magmas and 80% of mantle magmas by AFC with recharge processes. A comparison of Luingo geochemical data with the composition of Miocene-Pliocene volcanic rocks from the broad area, points to major thickening events during the middle Miocene for the western portion and during the upper Miocene for the eastern portion of the Southern CVZ. In the eastern sector (~. 66\ub0W) the mantle source appears to change from a spinel-lherzolite type for the middle Miocene to a garnet-lherzolite type for the upper Miocene-Pliocene magmas. The areal distribution of the volcanic products led to the recognition of approximately equivalent areas covered by volcanic rocks both in the eastern and in the western Puna borders. This indicates a broad arc, which was structurally controlled at the proto-Puna/Puna margins, whose geochemical differences are related with variations in crustal thicknesses and heterogeneous mantle sources from west to east