260 research outputs found

    Can long-range PCR be used to amplify genetically divergent mitochondrial genomes for comparative phylogenetics?: a case study within spiders (Arthropoda: Araneae)

    Get PDF
    The development of second generation sequencing technology has resulted in the rapid production of large volumes of sequence data for relatively little cost, thereby substantially increasing the quantity of data available for phylogenetic studies. Despite these technological advances, assembling longer sequences, such as that of entire mitochondrial genomes, has not been straightforward. Existing studies have been limited to using only incomplete or nominally intra-specific datasets resulting in a bottleneck between mitogenome amplification and downstream high-throughput sequencing. Here we assess the effectiveness of a wide range of targeted long-range PCR strategies, encapsulating single and dual fragment primer design approaches to provide full mitogenomic coverage within the Araneae (Spiders). Despite extensive rounds of optimisation, full mitochondrial genome PCR amplifications were stochastic in most taxa, although 454 Roche sequencing confirmed the successful amplification of 10 mitochondrial genomes out of the 33 trialled species. The low success rates of amplification using long-Range PCR highlights the difficulties in consistently obtaining genomic amplifications using currently available DNA polymerases optimised for large genomic amplifications and suggests that there may be opportunities for the use of alternative amplification methods

    Combining host and vector data informs emergence and potential impact of an Usutu virus outbreak in UK wild birds

    Get PDF
    Following the first detection in the United Kingdom of Usutu virus (USUV) in wild birds in 2020, we undertook a multidisciplinary investigation that combined screening host and vector populations with interrogation of national citizen science monitoring datasets to assess the potential for population impacts on avian hosts. Pathological findings from six USUV-positive wild passerines were non-specific, highlighting the need for molecular and immunohistochemical examinations to confirm infection. Mosquito surveillance at the index site identified USUV RNA in Culex pipiens s.l. following the outbreak. Although the Eurasian blackbird (Turdus merula) is most frequently impacted by USUV in Europe, national syndromic surveillance failed to detect any increase in occurrence of clinical signs consistent with USUV infection in this species. Furthermore, there was no increase in recoveries of dead blackbirds marked by the national ringing scheme. However, there was regional clustering of blackbird disease incident reports centred near the index site in 2020 and a contemporaneous marked reduction in the frequency with which blackbirds were recorded in gardens in this area, consistent with a hypothesis of disease-mediated population decline. Combining results from multidisciplinary schemes, as we have done, in real-time offers a model for the detection and impact assessment of future disease emergence events

    Detecting modification of biomedical events using a deep parsing approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This work describes a system for identifying event mentions in bio-molecular research abstracts that are either speculative (e.g. <it>analysis of IkappaBalpha phosphorylation</it>, where it is not specified whether phosphorylation did or did not occur) or negated (e.g. <it>inhibition of IkappaBalpha phosphorylation</it>, where phosphorylation did <it>not </it>occur). The data comes from a standard dataset created for the BioNLP 2009 Shared Task. The system uses a machine-learning approach, where the features used for classification are a combination of shallow features derived from the words of the sentences and more complex features based on the semantic outputs produced by a deep parser.</p> <p>Method</p> <p>To detect event modification, we use a Maximum Entropy learner with features extracted from the data relative to the trigger words of the events. The shallow features are bag-of-words features based on a small sliding context window of 3-4 tokens on either side of the trigger word. The deep parser features are derived from parses produced by the English Resource Grammar and the <it>RASP </it>parser. The outputs of these parsers are converted into the Minimal Recursion Semantics formalism, and from this, we extract features motivated by linguistics and the data itself. All of these features are combined to create training or test data for the machine learning algorithm.</p> <p>Results</p> <p>Over the test data, our methods produce approximately a 4% absolute increase in F-score for detection of event modification compared to a baseline based only on the shallow bag-of-words features.</p> <p>Conclusions</p> <p>Our results indicate that grammar-based techniques can enhance the accuracy of methods for detecting event modification.</p

    Benchmarking natural-language parsers for biological applications using dependency graphs

    Get PDF
    BACKGROUND: Interest is growing in the application of syntactic parsers to natural language processing problems in biology, but assessing their performance is difficult because differences in linguistic convention can falsely appear to be errors. We present a method for evaluating their accuracy using an intermediate representation based on dependency graphs, in which the semantic relationships important in most information extraction tasks are closer to the surface. We also demonstrate how this method can be easily tailored to various application-driven criteria. RESULTS: Using the GENIA corpus as a gold standard, we tested four open-source parsers which have been used in bioinformatics projects. We first present overall performance measures, and test the two leading tools, the Charniak-Lease and Bikel parsers, on subtasks tailored to reflect the requirements of a system for extracting gene expression relationships. These two tools clearly outperform the other parsers in the evaluation, and achieve accuracy levels comparable to or exceeding native dependency parsers on similar tasks in previous biological evaluations. CONCLUSION: Evaluating using dependency graphs allows parsers to be tested easily on criteria chosen according to the semantics of particular biological applications, drawing attention to important mistakes and soaking up many insignificant differences that would otherwise be reported as errors. Generating high-accuracy dependency graphs from the output of phrase-structure parsers also provides access to the more detailed syntax trees that are used in several natural-language processing techniques

    Next-generation mitogenomics: A comparison of approaches applied to caecilian amphibian phylogeny

    Get PDF
    Mitochondrial genome (mitogenome) sequences are being generated with increasing speed due to the advances of next-generation sequencing (NGS) technology and associated analytical tools. However, detailed comparisons to explore the utility of alternative NGS approaches applied to the same taxa have not been undertaken. We compared a 'traditional' Sanger sequencing method with two NGS approaches (shotgun sequencing and non-indexed, multiplex amplicon sequencing) on four different sequencing platforms (Illumina's HiSeq and MiSeq, Roche's 454 GS FLX, and Life Technologies' Ion Torrent) to produce seven (near-) complete mitogenomes from six species that form a small radiation of caecilian amphibians from the Seychelles. The fastest, most accurate method of obtaining mitogenome sequences that we tested was direct sequencing of genomic DNA (shotgun sequencing) using the MiSeq platform. Bayesian inference and maximum likelihood analyses using seven different partitioning strategies were unable to resolve compellingly all phylogenetic relationships among the Seychelles caecilian species, indicating the need for additional data in this case

    Integrated Approach Reveals Role of Mitochondrial Germ-Line Mutation F18L in Respiratory Chain, Oxidative Alterations, Drug Sensitivity, and Patient Prognosis in Glioblastoma

    Get PDF
    Glioblastoma is the most common and malignant primary brain tumour in adults, with a dismal prognosis. This is partly due to considerable inter- and intra-tumour heterogeneity. Changes in the cellular energy-producing mitochondrial respiratory chain complex (MRC) activities are a hallmark of glioblastoma relative to the normal brain, and associate with differential survival outcomes. Targeting MRC complexes with drugs can also facilitate anti-glioblastoma activity. Whether mutations in the mitochondrial DNA (mtDNA) that encode several components of the MRC contribute to these phenomena remains underexplored. We identified a germ-line mtDNA mutation (m. 14798T &gt; C), enriched in glioblastoma relative to healthy controls, that causes an amino acid substitution F18L within the core mtDNA-encoded cytochrome b subunit of MRC complex III. F18L is predicted to alter corresponding complex III activity, and sensitivity to complex III-targeting drugs. This could in turn alter reactive oxygen species (ROS) production, cell behaviour and, consequently, patient outcomes. Here we show that, despite a heterogeneous mitochondrial background in adult glioblastoma patient biopsy-derived cell cultures, the F18L substitution associates with alterations in individual MRC complex activities, in particular a 75% increase in MRC complex II_III activity, and a 34% reduction in CoQ10, the natural substrate for MRC complex III, levels. Downstream characterisation of an F18L-carrier revealed an 87% increase in intra-cellular ROS, an altered cellular distribution of mitochondrial-specific ROS, and a 64% increased sensitivity to clomipramine, a repurposed MRC complex III-targeting drug. In patients, F18L-carriers that received the current standard of care treatment had a poorer prognosis than non-carriers (373 days vs. 415 days, respectively). Single germ-line mitochondrial mutations could predispose individuals to differential prognoses, and sensitivity to mitochondrial targeted drugs. Thus, F18L, which is present in blood could serve as a useful non-invasive biomarker for the stratification of patients into prognostically relevant groups, one of which requires a lower dose of clomipramine to achieve clinical effect, thus minimising side-effects

    Nutritional correlates of koala persistence in a low-density population

    Get PDF
    It is widely postulated that nutritional factors drive bottom-up, resource-based patterns in herbivore ecology and distribution. There is, however, much controversy over the roles of different plant constituents and how these influence individual herbivores and herbivore populations. The density of koala (Phascolarctos cinereus) populations varies widely and many attribute population trends to variation in the nutritional quality of the eucalypt leaves of their diet, but there is little evidence to support this hypothesis. We used a nested design that involved sampling of trees at two spatial scales to investigate how leaf chemistry influences free-living koalas from a low-density population in south east New South Wales, Australia. Using koala faecal pellets as a proxy for koala visitation to trees, we found an interaction between toxins and nutrients in leaves at a small spatial scale, whereby koalas preferred trees with leaves of higher concentrations of available nitrogen but lower concentrations of sideroxylonals (secondary metabolites found exclusively in eucalypts) compared to neighbouring trees of the same species. We argue that taxonomic and phenotypic diversity is likely to be important when foraging in habitats of low nutritional quality in providing diet choice to tradeoff nutrients and toxins and minimise movement costs. Our findings suggest that immediate nutritional concerns are an important priority of folivores in low-quality habitats and imply that nutritional limitations play an important role in constraining folivore populations. We show that, with a careful experimental design, it is possible to make inferences about populations of herbivores that exist at extremely low densities and thus achieve a better understanding about how plant composition influences herbivore ecology and persistence.IW and WF received a grant from New South Wales (NSW) Department of Environment, Climate Change & Water

    The implications of three major new trials for the effect of water, sanitation and hygiene on childhood diarrhea and stunting: a consensus statement

    Get PDF
    BACKGROUND: Three large new trials of unprecedented scale and cost, which included novel factorial designs, have found no effect of basic water, sanitation and hygiene (WASH) interventions on childhood stunting, and only mixed effects on childhood diarrhea. Arriving at the inception of the United Nations' Sustainable Development Goals, and the bold new target of safely managed water, sanitation and hygiene for all by 2030, these results warrant the attention of researchers, policy-makers and practitioners. MAIN BODY: Here we report the conclusions of an expert meeting convened by the World Health Organization and the Bill and Melinda Gates Foundation to discuss these findings, and present five key consensus messages as a basis for wider discussion and debate in the WASH and nutrition sectors. We judge these trials to have high internal validity, constituting good evidence that these specific interventions had no effect on childhood linear growth, and mixed effects on childhood diarrhea. These results suggest that, in settings such as these, more comprehensive or ambitious WASH interventions may be needed to achieve a major impact on child health. CONCLUSION: These results are important because such basic interventions are often deployed in low-income rural settings with the expectation of improving child health, although this is rarely the sole justification. Our view is that these three new trials do not show that WASH in general cannot influence child linear growth, but they do demonstrate that these specific interventions had no influence in settings where stunting remains an important public health challenge. We support a call for transformative WASH, in so much as it encapsulates the guiding principle that - in any context - a comprehensive package of WASH interventions is needed that is tailored to address the local exposure landscape and enteric disease burden

    Entomological aspects and the role of human behaviour in malaria transmission in a highland region of the Republic of Yemen

    Get PDF
    © 2016 Al-Eryani et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The attached file is the published version of the article
    corecore