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Abstract

Background: Monogenean flatworms are the main ectoparasites of fishes. Representatives of the species-rich families
Gyrodactylidae and Dactylogyridae, especially those infecting cichlid fishes and clariid catfishes, are important parasites
in African aquaculture, even more so due to the massive anthropogenic translocation of their hosts worldwide. Several
questions on their evolution, such as the phylogenetic position of Macrogyrodactylus and the highly speciose
Gyrodactylus, remain unresolved with available molecular markers. Also, diagnostics and population-level research would
benefit from the development of higher-resolution genetic markers. We aim to offer genetic resources for
work on African monogeneans by providing mitogenomic data of four species (two belonging to Gyrodactylidae, two
to Dactylogyridae), and analysing their gene sequences and gene order from a phylogenetic perspective.

Results: Using Illumina technology, the first four mitochondrial genomes of African monogeneans were assembled
and annotated for the cichlid parasites Gyrodactylus nyanzae, Cichlidogyrus halli, Cichlidogyrus mbirizei (near-complete
mitogenome) and the catfish parasite Macrogyrodactylus karibae (near-complete mitogenome). Complete nuclear
ribosomal operons were also retrieved, as molecular vouchers. The start codon TTG is new for Gyrodactylus and
for Dactylogyridae, as is the incomplete stop codon TA for Dactylogyridae. Especially the nad2 gene is promising
for primer development. Gene order was identical for protein-coding genes and differed between the African
representatives of these families only in a tRNA gene transposition. A mitochondrial phylogeny based on an alignment of
nearly 12,500 bp including 12 protein-coding and two ribosomal RNA genes confirms that the Neotropical
oviparous Aglaiogyrodactylus forficulatus takes a sister group position with respect to the other gyrodactylids,
instead of the supposedly ‘primitive’ African Macrogyrodactylus. Inclusion of the African Gyrodactylus nyanzae
confirms the paraphyly of Gyrodactylus. The position of the African dactylogyrid Cichlidogyrus is unresolved,
although gene order suggests it is closely related to marine ancyrocephalines.
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Conclusions: The amount of mitogenomic data available for gyrodactylids and dactylogyrids is increased by
roughly one-third. Our study underscores the potential of mitochondrial genes and gene order in flatworm
phylogenetics, and of next-generation sequencing for marker development for these non-model helminths for
which few primers are available.

Keywords: Cichlidae, Clariidae, Cichlidogyrus, Gene order, Gyrodactylus, Macrogyrodactylus, Mitogenome,
Monogenea, Monopisthocotylea, Phylogenomics

Background
Ectoparasitic infections in bony fishes are dominated by
monogeneans [1]. Among their most species-rich taxa
are Gyrodactylidae and Dactylogyridae [2]. These in-
clude, respectively, the supergenera Gyrodactylus and
Dactylogyrus, some of the most significant radiations
of flatworm fish parasites [1]. Around 500 species of
Gyrodactylus have been described at present ([3] and
references therein), but the estimated species number
is much higher [4]. These minute flatworms attach to
their host by means of an opisthaptor, often used in
monogenean taxonomy [5]. The resulting disruption of
the epidermis may facilitate secondary infections by e.g.
fungi or bacteria [6]. Some genera within these families,
such as Gyrodactylus, Macrogyrodactylus, Dactylo-
gyrus and Cichlidogyrus include fish pathogens, espe-
cially in captive-reared stocks and after anthropogenic
co-introduction outside of their native range [2, 5, 7,
8]. In Africa, the most important aquaculture fishes
are species of Cichlidae and Clariidae, including the
Nile tilapia and the North African catfish, which have
been introduced worldwide [9, 10]. These fish families
are also relatively well-studied for monogenean para-
sites (e.g. [3, 11]). They harbour several originally Afri-
can monogeneans that are widely distributed within
and outside Africa, and that are important in the study
of parasite ecology, evolution and invasion biology be-
cause of the economic and scientific importance of
their hosts [12].
In view of the important threats that disease poses to

the sustainable development of aquaculture in develop-
ing countries, a better monitoring and identification of
aquatic pathogens is vital [13]. In Africa, better under-
standing of the diversity and ecology of fish parasites is
needed to implement government policies on aquatic
health management [14]. There is however a lack of
monitoring, despite massive anthropogenic translocation
of fishes that may lead to parasite co-introductions (e.g.
[15]). Monogeneans, in particular, have been assessed
as high-risk parasites in African aquaculture [16]. Since
common procedures for the identification of these mono-
geneans are lethal to the host and require a high level of
technical expertise, non-intrusive molecular diagnostics
are called for (e.g. [17] for Cichlidogyrus). However, there

is a lack of highly variable molecular markers for these
animals [12].
In addition, the phylogenetic position of African mono-

genean lineages, including several endemic or recently dis-
covered genera, is often poorly understood, also largely due
to low phylogenetic coverage. For example, the currently
most frequently used markers, situated in the nuclear ribo-
somal DNA region, have not fully resolved the position of
the typically African Macrogyrodactylus. The representa-
tives of this genus infect clariid catfishes, among other hosts
[18, 19]. Malmberg [20] suggested, based on morphological
data, that the genus comprises the earliest diverging lineage
of gyrodactylids. This is a family of mainly viviparous
monogeneans, although with some oviparous representa-
tives [6]. However, mitogenomic phylogenetics recently
suggested the Neotropical oviparous gyrodactylid Aglaio-
gyrodactylus forficulatus as sister to all other, viviparous,
family members [21]. Also, Malmberg’s hypothesis was
contradicted by nuclear phylogenetic data placing Macro-
gyrodactylus with other viviparous lineages [19]. Another
long-standing issue in the phylogeny of this monogen-
ean family, is the status of its most species-rich and
well-studied genus, Gyrodactylus ([22] and references
therein), first suggested to be paraphyletic by Kritsky &
Boeger [23].
Recently, next-generation sequencing (NGS) approaches

have facilitated marker development for non-model hel-
minths [24]; this includes the assembly of mitogenomes for
fish helminths [25, 26]. Here we want to apply this approach
to the understudied, but highly diverse, African monogenean
fauna. We targeted two common tilapia-infecting species of
Cichlidogyrus (Dactylogyridae), the most speciose monogen-
ean genus infecting African cichlid fishes [27]; one
gyrodactylid parasite of cichlids; and a representative of
Macrogyrodactylus. Through phylogenomic and gene
order analysis, we address the following questions:

(1) Are the Neotropical oviparous gyrodactylids still
basal in a mitochondrial phylogeny when including
the viviparous Macrogyrodactylus, which is
supposedly the earliest divergent gyrodactylid
lineage according to Malmberg [20]?

(2) Does the phylogeny based on mitogenomic data
confirm the paraphyly of Gyrodactylus?
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(3) Do the African representatives of Gyrodactylidae
have the same gene order in their mitochondrial
genome as the known Palearctic ones?

(4) Do the African freshwater representatives of
Dactylogyridae have the same gene order as seen
in the only known dactylogyrid mitogenomes,
from a Palearctic freshwater and an Indo-Pacific
marine species?

Results
Genomic DNA sequencing on three quarters of a MiSeq v.
3 flowcell yielded 15,980,972 indexed paired-end 300 bp
reads. Complete mitochondrial genomes were assembled
for G. nyanzae (with a length of 14,885 base pairs (bp)) and
C. halli (15,047 bp). A circular genome could not be assem-
bled for C. mbirizei (12,921 bp) and M. karibae (13,002 bp)
(Fig. 1). The annotated sequences were deposited in NCBI
GenBank under accession numbers MG970255-8. The total
number of reads mapped across all of the assembled mito-
chondrial genomes was 12,776, accounting for 0.8 % of the
genomic readpool obtained, with an average coverage of

160, 31, 76 and 42 reads for G. nyanzae, C. halli, C. mbirizei
and M. karibae, respectively. The coverage along the
various protein-coding and ribosomal RNA (rRNA)
genes is detailed in Table 1. All complete protein-coding
genes (PCGs) were represented by a minimum of 15×
coverage, with a minimum average coverage of 29×
(Table 1). The ribosomal operons of G. nyanzae (6799 bp),
M. karibae (6675 bp), C. halli (7496 bp) and C. mbirizei
(7005 bp) were deposited as additional molecular vouchers
for these species, under NCBI GenBank accession
numbers MG973075-8; their annotation is provided in
Additional file 1. We did not include these sequences
in our phylogenetic analyses because of the lack of published
complete ribosomal operons for other species represented.

Mitogenome characterisation
The protein-coding, ribosomal RNA and tRNA genes
are characterised in Table 2. The two complete mitogen-
omes were each comprised of 22 tRNA genes (including
two for the amino acids serine and leucine each) and 12
intron-free PCGs and lack the atp8 gene. The genes

Fig. 1 Mitochondrial genomes of four African monogeneans, including two members of the Gyrodactylidae: (a) Gyrodactylus nyanzae, (c)
Macrogyrodactylus karibae (partial genome) and two representatives of the Dactylogyridae: (b) Cichlidogyrus halli and (d) Cichlidogyrus mbirizei
(partial genome). The GC content is displayed for complete mitogenomes
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coding for the large and small subunit of the mitochon-
drial rRNA were identified for all four species, as were
most PCGs (Fig. 1). Only the nad5 gene of C. mbirizei
and the nad4 gene and part of the nad4L gene of M.
karibae were missing. Within the respective monogen-
ean families, start and stop codons of most genes are
conserved in these African species (Table 2). Within the
two gyrodactylids, only the stop codons of the cytb,
atp6, cox1 and nad6 genes differ; within dactylogyrids,
this is only the case for the genes coding for cytb, nad3
and cox1. The only difference in start codon usage was
found in the nad2 and nad6 gene in Cichlidogyrus. Ab-
breviated stop codons occur in the cox3 and nad2 genes
of the two species of Cichlidogyrus.
Mitogenome gene arrangement differed between the

African representatives of the dactylogyrids and gyro-
dactylids only in a single tRNA gene transposition.
Protein-coding genes appeared in identical order (see
below for pairwise gene order comparisons in a phylo-
genetic context). Several non-coding regions (NCRs)
were observed in all four mitogenomes (Fig. 1). In G.
nyanzae, one of them, a 603 bp stretch between the
genes for nad6 and trnE, nearly perfectly repeats (ex-
cept for one substitution) a fragment of 282 bp 2.1
times. The second one, an AT-rich segment (ca. 17%
GC content) of 764 bp between the atp6 and trnF
genes, was not identified as a repeat region. In con-
trast to this, and to the single repeat region of G.
nyanzae, two consecutive repeat regions were identi-
fied adjacent to the atp6 gene in the partial mitogen-
ome of M. karibae, one 174 bp long with a period of

87 bp (two repeats, 95% match) and the other one
167 bp long with a period of 73 bp (2.3 repeats, 99%
match). It has to be noted however, that the possibility
of a second, potentially longer non-coding region can-
not be excluded due to the double amount of reads in
this non-coding region. However, the annotation is in-
complete and the exact location can only be inferred
using conventional Sanger sequencing. Also the mito-
genome of C. halli has two repeat regions, between
the trnG and nad5 genes: a 392 bp fragment with repeats
of 86 bp (4.6 repeats, 99% match), and a 544 bp fragment
with repeats of 167 bp (3.3 repeats, 98% match). In
addition, there are AT-rich segments between the cox2
and 12S rRNA genes (577 bp with a GC content of ca.
20%) and between the trnD and trnA genes (65 bp with a
GC content of ca. 33%, displaying 58% sequence similarity
with a motif in the former AT-rich segment). In the mito-
genome of its congener C. mbirizei, a 320 bp stretch is
duplicated (97% match) between the genes coding for
cox2 and 12S rRNA on the one hand, and nad6 and trnE
on the other hand.
The sliding window analysis showed concurring patterns

and similar values of nucleotide diversity across the mito-
chondrial genes for the gyrodactylid and dactylogyrid
comparisons (Fig. 2). The highest values were found in the
genes coding for subunits of NADH dehydrogenase. The
dN/dS ratios in the two pairwise comparisons vary, with
the highest values in genes coding for subunits of NADH
dehydrogenase (Fig. 3). Values remain around or below
0.1 and are higher for the comparison between the two
dactylogyrids than between the two gyrodactylids.

Table 1 Minimum–maximum and average coverage (in number of reads) of the protein-coding and rRNA genes for the four
assembled mitochondrial genomes

Gyrodactylus nyanzae Macrogyrodactylus karibae Cichlidogyrus halli Cichlidogyrus mbirizei

Gene Range Average Range Average Range Average Range Average

cox3 151–184 165 21–48 39 41–59 51 101–131 118

cytb 136–174 155 16–44 29 51–74 61 115–165 139

nad4L 159–198 179 – – 66–79 72 155–199 179

nad4 125–217 177 – – 42–75 56 112–187 140

atp6 119–194 166 34–43 39 54–72 63 98–140 119

nad2 130–195 167 36–56 47 49–68 56 121–177 149

nad1 148–205 183 15–61 30 49–74 61 134–170 147

nad3 151–175 163 27–44 35 48–72 59 152–180 166

cox1 125–182 149 29–56 42 33–70 51 112–177 148

16S rRNA 102–140 122 22–44 34 39–87 61 157–315 263

12S rRNA 103–134 115 28–40 33 31–56 43 225–288 253

cox2 129–151 139 37–50 44 48–69 57 199–349 252

nad6 107–162 141 27–43 35 38–57 49 76–130 112

nad5 127–183 160 24–49 38 27–70 49 – –

Averages are rounded to the nearest integer. “-”indicates a partially characterized or missing gene
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Phylogenetic and gene order analyses
The concatenated alignment of 12 PCGs and two
rRNA genes for 18 monogenean species contained
12,464 bp and 9184 variable sites, of which 8060 were
parsimony-informative (although we do not analyse
the data with parsimony). The topologies retrieved in
ML and BI analyses were near-identical, except for the
position of Tetrancistrum nebulosi; the resolution
within Dactylogyridae is poor (Fig. 4). Capsalids and
dactylogyrids firmly cluster together. Macrogyrodactylus
karibae and Paragyrodactylus variegatus appear as sister
taxa, albeit with long branches, presumably due to incom-
plete taxon coverage. Gyrodactylus nyanzae clusters with
the clade of Macrogyrodactylus and Paragyrodactylus,

rendering Gyrodactylus paraphyletic. Aglaiogyrodactylus is
firmly positioned as basal to the other gyrodactylids.
Within Gyrodactylidae, a transposition of two tRNA

genes was the only difference in gene order between
the African representatives and the Palearctic species of
Gyrodactylus (Fig. 5a), while two adjacent tRNA genes
were transposed between the African representatives
and P. variegatus (Fig. 5b). The difference in mitochon-
drial gene order between the African gyrodactylids and
the Neotropical Aglaiogyrodacylus forficulatus can be
explained by a tandem duplication random loss (TDRL)
event and two transpositions, or, alternatively, four
transpositions (Fig. 5c). The gene order in the mitogen-
omes of both species of Cichlidogyrus was identical to

Fig. 2 Sliding window analyses (window size 300 bp, step size 10 bp) of the alignment of mitochondrial protein-coding and ribosomal RNA
genes used for the phylogenetic analyses of the four mitochondrial genomes of African monogeneans. The lines indicate the nucleotide diversity
between two dactylogyrids (Cichlidogyrus halli and C. mbirizei, in blue) and two gyrodactylids (Gyrodactylus nyanzae and Macrogyrodactylus
karibae, in red). Gene boundaries are indicated above the graph

Fig. 3 Ratio of non-synonymous to synonymous substitution rates for the protein-coding genes in two pairwise comparisons, between the
mitogenomes of African dactylogyrid and gyrodactylid monogeneans, respectively. For Macrogyrodactylus karibae, no nad4 sequence was
available, while the nad5 gene was lacking for Cichlidogyrus mbirizei
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that of their family member T. nebulosi, and the gyro-
dactylid P. variegatus. This gene order differed simply
in one tRNA gene transposition from that of Gyrodac-
tylus nyanzae (Fig. 5b) and from that of Dactylogyrus
lamellatus (Fig. 5d).

Discussion
As the low number of available genetic markers imposes
limitations on research on non-model flatworms [28],
improved and cost-efficient NGS offers ever-more op-
portunities for genomic work on helminths [29]. Using

Fig. 4 Midpoint-rooted maximum likelihood phylogram of monopisthocotylean monogeneans based on 12 protein-coding and two ribosomal
RNA genes. Support values displayed from (above branch): Shimodaira-Hasegawa-like approximate likelihood ratio test/ultrafast bootstrap, both
implemented in IQ-TREE, (below branch) bootstrap in RAxML/Bayesian inference (posterior probability) in MrBayes. An asterisk (*) indicates that
this partition was not withheld in the Bayesian consensus tree; the clade grouping Dactylogyrus lamellatus and Tetrancistrum nebulosi as sister to a
monophyletic Cichlidogyrus was supported by a posterior probability of 58%. Branch lengths indicate the expected number of substitutions
per site

Fig. 5 Family diagram explaining gene order changes between (a) African Gyrodactylus nyanzae and its Palearctic congeners (a single
transposition), (b) G. nyanzae and Paragyrodactylus variegatus (a single transposition), (c) G. nyanzae and the Neotropical oviparous gyrodactylid
Aglaiogyrodactylus forficulatus (two transpositions and a tandem duplication random loss event (TDRL)) and (d) Dactylogyrus lamellatus and the
other dactylogyrids (a single transposition). Green boxes indicate transpositions, a dark blue box a TDRL. Only protein-coding genes, tRNA genes
and rRNA genes of species for which a complete mitogenome was assembled, are shown
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Illumina technology we assembled, for African gyrodac-
tylid and dactylogyrid monogeneans, one complete and
one partial mitogenome each (Fig. 1).
So far only nine gyrodactylid [21, 30–36] and two dacty-

logyrid [37, 38] monogenean mitogenomes have been pub-
lished. Our study substantially increases the quantity of
available mitogenomic data on these two most diverse
monogenean families, by one-third, and offers the first
mitogenomes from African representatives. The mitochon-
drial nucleotide diversity of monogeneans is aptly illustrated
by the fact that universal barcoding primers for these
species-rich helminths are unavailable [28]. Hence utilising
NGS technologies is promising for monogeneans and for
other non-model organisms for which typically few or no
PCR primers are available. Newly obtained mitogenomes
can provide a relatively large set of (coding) molecular
markers for molecular evolutionary research. These can
be used to develop taxon-specific mitochondrial primers
for phylogeographic or population genetic analyses. Chal-
lenges however remain, such as the characterisation of
AT-rich and repeat regions, in view of the read length of
only 300 bp (see also [39]). Also, it is questionable to what
extent this NGS approach is workable for rare or oppor-
tunistically collected monogenean species, as it has been
applied mostly on pools of a considerable number of indi-
viduals (this study) or on single larger worm specimens
(e.g. [39]). Furthermore, in view of frequent mixed infec-
tions, ideally specimens are morphologically identified
prior to DNA extraction. This renders the pooling of spec-
imens labour-intensive and sensitive to contamination.
Developing reliable NGS shotgun methodologies that can
work with single monogeneans, often very small (< 500–
1000 μm) in length, will be a worthwhile goal for future
molecular ecological and evolutionary studies.

Mitogenome characterisation and potential for marker
development
Throughout the PCGs in the four African mitogenomes,
the typical start codons are mostly used: commonly ATG
in gyrodactylids, and a combination of ATG and GTG in
dactylogyrids. The same goes for the stop codons, typically
TAA or TAG. Noteworthy exceptions are the cox2 gene of
G. nyanzae and M. karibae and the nad6 gene of C. halli,
with TTG as start codon. This has been reported in
monogeneans before, e.g. in the cox2 gene of Paragyrodac-
tylus variegatus [33]. However, it is reported for the first
time here from a dactylogyrid monogenean [37, 38]; also,
it is hitherto unique for a member of Gyrodactylus. It is
somewhat unsurprising that the full breadth of codon
usage diversity in this genus had not yet been captured,
since existing mitogenomic data were limited to Palearctic
species, all belonging to the subgenus Limnonephrotus,
defined by Malmberg [40] on the basis of the excretory
system. As regards abbreviated stop codons, the use of T

had already been observed in a dactylogyrid monogenean,
namely Dactylogyrus lamellatus [38]. The occurrence of
TA as an incomplete stop codon, such as in the nad2 gene
of both species of Cichlidogyrus, is newly reported for dac-
tylogyrids. It has previously been reported in the same
gene for Gyrodactylus brachymystacis [34].
Mitochondrial markers have a wide range of applications

in micro-evolutionary and macro-evolutionary research on
helminths. For most gyrodactylid and dactylogyrid monoge-
neans, a small set of established mitochondrial gene frag-
ments (coding for cox1, cox2, nad2 and 16S rRNA) are the
most variable markers available. These were applied in
population genetics and demography [41, 42], in barcoding
[43, 44], in phylogeography [45–48], to detect hybridisation
[18] and to elucidate the phylogeny of closely related species
[49] or genera [21, 50] or of higher-order taxa in monoge-
neans [51] and other flatworms (e.g. tapeworms [52]).
Within Palearctic gyrodactylids, nad2, nad4 and nad5

are the most variable genes in the mitochondrial genome
and were therefore suggested as markers to study
population-level processes [31, 34]. For African gyrodac-
tylids and dactylogyrids, especially the nad2 gene seems
promising for marker development as it is flanked by ra-
ther conservative stretches (Fig. 2). The dN/dS values
for all mitochondrial PCGs fall well below 1 (Fig. 3), in-
dicating purifying selection and confirming earlier mito-
genomic work on monogeneans (e.g. [31, 38]). Overall
purifying selection acting on mitochondrial genes has
also been observed in a range of vertebrates [53, 54].
All hitherto known mitogenomes of species of Gyro-

dactylus, all representing the subgenus Limnonephrotus,
contain two near-identical NCRs [34]. Conversely, such
duplicated NCRs are absent in their congener G. nyanzae
and, in our dataset, only found in C. mbirizei. Indeed, our
results suggest substantial differences in the length, num-
ber and position of NCRs between African monogeneans
even among gyrodactylids and within Cichlidogyrus
(Fig. 1). There is no clear phylogenetic pattern, but a
comparison with mitochondrial genomes of other gyro-
dactylid and dactylogyrid monogeneans indicates that
non-coding (repeat) regions are commonly positioned
in between certain pairs of genes: e.g. trnD and trnA in
C. halli and Aglaiogyrodactylus forficulatus [21]; trnE
and nad6 in G. nyanzae and C. mbirizei; nad5 and trnG
in C. halli and Tetrancistrum nebulosi [37]; trnF and
atp6 in G. nyanzae and its Palearctic congeners (e.g.
[31, 34]); and 12S rRNA and cox2 in C. halli and C.
mbirizei. Also a NCR containing two repeat regions in
the vicinity of the nad5 gene, such as reported here for
C. halli, has been reported before in dactylogyrids,
namely by Zhang et al. [38] for Dactylogyrus lamellatus.
Previous studies suggested the possibility of a func-
tional role for certain NCRs [33] and the potential that
NCRs offer for population-level research [38].
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Ribosomal operons and utility
Characterising full nuclear ribosomal operons provides a
wealth of information for established and prospective mo-
lecular markers. Ribosomal DNA codes for all the nuclear
ribosomal genes (18S, 5.8S and 28S rRNA) and also includes
the external and internal transcribed spacer regions (ETS,
ITS1, ITS2). As tandemly repeated units, ribosomal operons
occur in high number, and the remarkable variation in rate
of molecular evolution within and between nuclear rRNA
gene regions has driven their popularity as a source for mo-
lecular markers in Metazoa [55] and within the parasitic flat-
worms [56]. Within flatworms ITS regions are popular for
discriminating between closely related species [57], and
complete 18S and partial (D1-D3) regions of 28S rDNA
were used for phylogenetics of Monogenea (e.g. [58]). In
combination with mitochondrial genes, nuclear ribosomal
RNA genes are invaluable for discriminating hybrid species,
especially important when revealing the identity of
disease-causing parasites (e.g. [59]). Many nuclear rRNA
gene regions have been used to discriminate species, to re-
solve phylogenetic relations and as molecular ecological
markers amongst monogeneans [49, 60]. Within the newly
characterised mitogenomes of African monogeneans in this
study, the full operon ranged in size between 6675 and
7496 bp largely reflecting differences in length of spacer re-
gions. We consider this to be a rich resource for a diversity
of future studies, especially in the emerging field of environ-
mental (eDNA) metabarcoding and metagenomics where
access to highly conserved, and high copy number markers
will greatly benefit accurate species identification [61]. In
addition, a pairwise or multiple alignment of full ribosomal
operons will readily highlight regions of sequence variability
and conservation suggesting potential marker regions and
regions for PCR primer design. Future studies aimed at
population genetics, hybridisation, biogeography, cryptic
species recognition, and host-parasite interactions will bene-
fit from access to the full rRNA operon and the full mito-
genomes of these, and additional taxa. Certainly,
characterisation of full ribosomal operons by means of NGS
genome skimming is considerably easier, and cheaper than
by long PCR and primer walking using Sanger technology.

Mitochondrial phylogeny, gene order and implications for
the position of African gyrodactylid and dactylogyrid
monogeneans
Our phylogenetic reconstruction based on 12 mitochondrial
PCGs and 2 rRNA genes aimed to elucidate the position of
African Macrogyrodactylus, Gyrodactylus and Cichlidogyrus
(Fig. 4). All tree topologies firmly place the Neotropical ovip-
arous Aglaiaogyrodactylus forficulatus as a sister lineage to
all other representatives of Gyrodactylidae. This refutes
Malmberg’s [20] hypothesis of Macrogyrodactylus being the
most early divergent gyrodactylid. In addition, the inclusion
of an African representative, G. nyanzae, renders

Gyrodactylus paraphyletic. Hence, we provide the first mito-
chondrial data supporting the paraphyly of the genus, cor-
roborating earlier phylogenetic hypotheses based on
morphology [23] or nuclear rRNA genes [19, 22, 62].
The evolutionary distances and nucleotide diversity be-

tween the two representatives of Cichlidogyrus appear simi-
lar to, or even higher than, those between the two African
gyrodactylids that are assigned to different genera, Macro-
gyrodactylus and Gyrodactylus (Figs. 2, 4). This corresponds
to earlier work on these monogeneans that indicated the
need for revision of Cichlidogyrus and Gyrodactylus. Van-
hove et al. [62] and Přikrylová et al. [19] reported that gen-
etic distances between gyrodactylid genera can reach the
same order of magnitude as within the nominal genus
Gyrodactylus, suggesting that a revision is necessary for
several viviparous gyrodactylid genera including Gyro-
dactylus, although a monophyletic Macrogyrodactylus
is strongly supported. Likewise, Pouyaud et al. [63] sug-
gested that lineages within Cichlidogyrus sufficiently differ
to be raised to generic status. In their analyses, the inclu-
sion of Scutogyrus indeed rendered Cichlidogyrus paraphy-
letic, a finding confirmed in later analyses (e.g. [60]). The
relationships between the only three dactylogyrid genera
in the mitogenomic tree, all of them from the ‘Old World’,
are not well resolved. Both Cichlidogyrus and Tetrancis-
trum have previously been mentioned as members of the
Ancyrocephalinae (or Ancyrocephalidae). The monophyly
of this (sub)family has often been challenged in earlier
work (e.g. [50, 64, 65]). Two topologies (Tetrancistrum as
a sister to Cichlidogyrus or, alternatively, to Dactylogyrus)
have an equally low posterior probability under BI. Hence,
our tree is not informative on the status of the Ancyroce-
phalinae versus the Dactylogyrinae, to which Dactylogyrus
belongs. Although the polytomy makes it hard to favour
either of the two alternative positions of Tetrancistrum,
the gene order is identical between the representatives of
Tetrancistrum and Cichlidogyrus in contrast to the repre-
sentative of Dactylogyrus. We therefore consider the
sister-group relation between the former two genera the
biologically most likely hypothesis. This also corresponds
to the nuclear rDNA-based results of Blasco-Costa et al.
[66] suggesting that Tetrancistrum and Cichlidogyrus be-
long to the same clade of mostly marine ancyrocephalines.
The affinity between Cichlidogyrus and marine genera,
despite the likely sampling bias as many dactylogyrid gen-
era have not yet been sequenced, is worth looking into be-
cause of the potential of cichlid parasites in elucidating
the alleged role of marine dispersal in cichlid biogeog-
raphy [67]. It would be worthwhile to consider mitochon-
drial gene order as a phylogenetic marker for further
disentangling the relationships between purported dacty-
logyridean (sub)families.
While it is well-established that gene order is phylogenet-

ically informative, it mainly seems to differ, certainly for
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PCGs, at the level of major flatworm lineages, such as
between catenulids, triclads, polyclads and neodermatans
[68]. Within the major flatworm clades, e.g. at order or
family level, differences in mitogenome architecture mainly
concern tRNA genes and NCRs (e.g. [69] for capsalids, [70]
for triclads). This is confirmed in our results, where
gene order differences within the dactylogyrids (Fig. 5d)
and the viviparous gyrodactylids only concern tRNA
genes (Fig. 5a, b). The transpositions seem to concur with
evolutionary distance, e.g. simply two adjacent tRNA genes
have swapped position within the Macrogyrodactylus-Para-
gyrodactylus-Gyrodactylus nyanzae clade (Fig. 5b). All
viviparous gyrodactylids including Macrogyrodactylus have
identical PCG orders. However, Aglaiogyrodactylus forficu-
latus displays a different PCG arrangement (Fig. 5c), which
underscores its particular position within Gyrodactylidae,
apart from the viviparous members of this family.

Conclusions
The first mitogenomic data for African monogeneans are
provided, characterising two partial and two complete
mitochondrial genomes. These confirm earlier results on
the variability of and purifying selection on mitochondrial
genes in monogeneans, and highlight some patterns in the
location of NCRs. These mitogenomes increased the
known diversity of start and stop codon usage in dactylo-
gyrids and in species of Gyrodactylus. A phylogeny based
on 14 mitochondrial markers firmly confirmed the Neo-
tropical oviparous Aglaiogyrodactylus as ‘basal’ to the
other gyrodactylids, rather than the allegedly ‘primitive’
Macrogyrodactylus. Furthermore, it provided additional
evidence for the paraphyly of Gyrodactylus. While the
gene order for PCGs remained constant throughout the
species considered, the study suggested tRNA transposi-
tions to be phylogenetically informative for relationships
within the family level.
As highlighted above, (mitochondrial) gene sequences

are established tools in the identification of monogeneans,
including potentially pathogenic and invasive strains of
fish parasites, but their availability for African species re-
mains limited. We hope that this study will contribute to
marker development and diagnostics, and hence to eco-
logical and evolutionary studies of African monogeneans.

Methods
Sampling
Fish hosts were collected in the Haut-Katanga province of
the D.R. Congo in 2014. Sampling was carried out under
research permit no. 863/2014 from the Faculté des Sciences
Agronomiques of the Université de Lubumbashi, D.R.
Congo. Two individuals of North African catfish Clarias
gariepinus (vouchers URA 2014-P-1-004 at the Université
de Lubumbashi and MRAC 2015–06-P tag AB49120835 at
the Royal Museum for Central Africa (RMCA), Belgium)

were caught in the Kiswishi River at Futuka Farm (11°29’S
27°39’E) on August 30th-31st and a hybrid between Nile til-
apia Oreochromis niloticus and Mweru tilapia Oreochromis
mweruensis (voucher MRAC 2015–06-P tag 2655) at the
Kipopo station of the Institut National pour l’Etude et la
Recherche Agronomiques (11°34’S 27°21’E) on August
27th. Hosts were sacrificed using an overdose of tricaine
methanesulfonate (MS222). Parasites isolated either in situ
or later from preserved fish gills were fixed and preserved
in analytical-grade ethanol. Individual monogenean speci-
mens were temporarily water-mounted between slide and
coverslip, and identified on the basis of their morphology
using keys and features described in [3, 18, 27]. Identified
specimens were pooled per species in absolute ethanol: four
specimens of Macrogyrodactylus karibae (supplemented
with two extracts from [18]), 43 of Cichlidogyrus mbirizei,
18 of Cichlidogyrus halli and 44 of Gyrodactylus nyanzae.
While M. karibae is a typical gill parasite of Clarias
gariepinus known from southern Africa ([18] and refer-
ences therein), G. nyanzae and especially C. halli are
known from a wide range of cichlids throughout Africa
[3, 27]. The two latter species have previously been re-
ported from tilapias in the Haut-Katanga province [71].
Cichlidogyrus mbirizei was only recently described from
the Lake Tanganyika endemic Oreochromis tanganicae
[72]. It was afterwards also found on Nile tilapia and its
hybrid O. niloticus x mossambicus [73, 74] and is here
for the first time reported from O. niloticus x mweruensis.
Both species of Cichlidogyrus have been co-introduced
outside Africa, in nature and in aquaculture settings
(e.g. [73–75]).

DNA extraction and sequence assembly
Total genomic DNA was extracted using the DNeasy
Blood and Tissue Kit (Qiagen) following the manufac-
turer’s instructions. The amount of double-stranded DNA
isolated was measured with Qubit® 2.0 Fluorometer (Life
Technologies, Paisley, UK) yielding 0.9 (M. karibae), 3.3
(C. halli), 3.2 (C. mbirizei) and 1.8 (G. nyanzae) ng/μl total
DNA.
Samples for NGS were prepared and run at the DNA

Sequencing Facility of the Natural History Museum,
London, UK. Genomic DNA was indexed and libraries
prepared using the TruSeq Nano DNA Sample Preparation
Kit (Illumina, Inc., San Diego, USA), and run simultan-
eously on a MiSeq Illumina sequencer yielding 300 bp long
paired-end reads. The new mitogenomes were directly as-
sembled using Geneious v. 8.1.9 [76]. The sequences were
first trimmed (error probability: 0.05, maximum ambiguity:
1) and then assembled. Partial cox1 sequences of Gyrodac-
tylus salaris (NC008815 [30]) (for G. nyanzae), Macrogyro-
dactylus clarii (GU252718 [18]) (for M. karibae) and
Cichlidogyrus zambezensis (KT037411 [49]) (for representa-
tives of Cichlidogyrus) were used as reference sequence to

Vanhove et al. BMC Genomics  (2018) 19:520 Page 11 of 16



extract cox1 reads from the Illumina genomic readpool to
form the consensus sequence to subsequently map the
reads on successive iterations. Trimmed reads were
mapped back to the contigs in order to estimate the full
mitochondrial genome coverage, trim the overlapping
regions to create a circular molecule, and to inspect for
potential mapping/assembly errors in problematic regions
such as repetitive regions [77]. In instances where dis-
agreements occurred between reads, the consensus se-
quence was generated by choosing the most frequently
represented base.
Using nuclear ribosomal RNA gene sequences for

Cichlidogyrus halli and Macrogyrodactylus congolensis
from GenBank (accessions: HE792784 [60] and HF548680
[19] respectively), fragments of the ribosomal RNA operon
were identified and assembled using the same iterative
process as described for the mitochondrial genome. Exact
coding positions of the 18S and 28S nuclear rDNAs, as
well as the respective 5′ and 3′ boundaries of the external
transcribed spacers, were determined using RNAmmer
[78]. Subsequently the complete annotation was compared
with the fully-annotated human rDNA repeating unit
(GenBank accession: HSU13369).

Mitogenome annotation
The identity and boundaries of individual PCGs and
rRNA genes were determined using the MITOS web ser-
ver [79] in combination with the visualisation of open
reading frames in Geneious and a comparison with align-
ments of available mitogenomes of closely related mono-
pisthocotylean monogeneans. In addition to MITOS, the
ARWEN v. 1.2 [80] and tRNAscan-SE v. 2.0 [81] web
servers were used to identify the tRNA-coding regions.
When results between applications conflicted, the solution
proposing a 7 bp acceptor stem was chosen. We checked
for repeat regions with Tandem Repeats Finder [82] and
YASS [83]. The resulting mitogenomes were visualised in
OGDRAW v. 1.1 [84].

Alignment, sequence analysis, phylogenetic
reconstruction and gene order analysis
Ribosomal RNA genes were aligned by MAFFT v. 7 [85]
using the Q-INS-i iterative refinement method, taking into
account RNA secondary structure [86]. Codon-based align-
ment of all obtained PCGs was performed under the ech-
inoderm and flatworm mitochondrial genetic code [87]
using MUSCLE [88] implemented in SeaView v. 4.6.2 [89].
Since omitting unreliable portions of the alignment may in-
crease resolution in phylogenomic reconstructions [90], an
alternative alignment was obtained by trimming in Gblocks
v. 0.91b [91], implemented for the PCGs in TranslatorX
[92], carrying out codon-based MAFFT alignment followed
by alignment cleaning in Gblocks. Options for a less strin-
gent selection were selected, allowing smaller final blocks,
gap positions within the final blocks, and less strict flanking
positions. Especially for smaller datasets, trimming entails
the risk of removing information contributing to phylogen-
etic signal [90]. Therefore, likelihood mapping [93] was
performed in TREE-PUZZLE v. 5.3 [94] to compare
the phylogenetic content of the complete and trimmed
concatenated alignment. The percentage of fully, partially
and unresolved quartets was 99.4, 0.5 and 0.1 in both
cases, hence trimming did not increase phylogenetic con-
tent and the original alignment was preferred for down-
stream analyses (Fig. 6). Comparing, in DAMBE [95], the
index of substitution saturation with its critical value at
which sequences would start to fail to recover the true
phylogeny, indicated little substitution saturation for this
dataset [96].
Using the aligned sequences, two pairwise comparisons

between members of the same monogenean family (C.
halli versus C. mbirizei; G. nyanzae versus M. karibae)
were made. Firstly, we visualised the nucleotide diversity
by a sliding window analysis of nucleotide diversity (π) in
DnaSP v. 5.10.01 [97], with a window size of 300 bp and a
step size of 10 bp. To allow comparison between the dac-
tylogyrid and gyrodactylid haplotypes, this approach was
limited to the PCGs and rRNA genes. Secondly, for the

Fig. 6 Likelihood mapping (a) before and (b) after Gblocks trimming, demonstrating the high phylogenetic content and suggesting there is no
need for alignment cleaning in the case of this dataset
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PCGs of the same pairs of species, the proportion of
non-synonymous versus synonymous substitutions (dN/
dS ratio) was calculated in the codeml program of PAML
[98] as implemented in PAL2NAL [99].
To situate the African monogeneans under study within

their respective families, the PCGs and rRNA genes of all
available dactylogyrid [37, 38] and gyrodactylid [21, 30–36]
mitogenomes were included in phylogenetic analyses. The
species of Capsalidae for which mitogenomes are available
[69, 100, 101] were also included as they strongly cluster
with the dactylogyrids [21, 38].
The best partition scheme and the optimal models of

molecular evolution were determined based on the
Bayesian Information Criterion using ModelFinder [102]
with partition merging [103]. The selected partitions and
models are shown in Table 3. These were used for
Bayesian inference (BI) of phylogeny, whereby posterior
probabilities were calculated in MrBayes v. 3.2 [104]
over 10 million generations, sampling the Markov chain
at a frequency of 100 generations. Chain stationarity was
evidenced by a standard deviation of split frequencies of
8.10–4, absence of a trend in the probabilities plotted
against the generations, and a potential scale reduction
factor [105] converging towards 1. One-fourth of the
samples were discarded as burn-in. The same partitions
were used in a maximum likelihood (ML) search in
IQ-TREE [106], using four gamma-rate categories and
an edge-linked partition model. Nodal support was
assessed through 10,000 ultrafast bootstrap [107] and
1000 Shimodaira-Hasegawa-like approximate likelihood
ratio test [108] replicates. In addition, a ML tree was
constructed in RAxML v. 8.1.21 [109] implemented in
raxmlGUI v.1.3 [110], using codon-specific partitions
under the GTR + Γ + I model with joint branch length
optimization, and with 1000 bootstrap samples to calcu-
late support values. ALTER [111] and GenBank 2 Sequin
[112] were used for file conversion, and SequenceMatrix
[113] to concatenate alignment files.

Gene orders were compared, and family diagrams of
gene orders constructed, using CREx [114]. For those
genes that were available from the partial mitogenomes,
gene order was identical between M. karibae and G.
nyanzae, and between C. mbirizei and C. halli, respect-
ively. Therefore, only the complete mitogenomes could
be included in gene order analyses. For the same reason
of comparability, non-coding regions (NCRs) were omit-
ted in gene order analysis.

Additional file

Additional file 1: Table S1. Annotation of the ribosomal operons of the
four African monogenean species. (TXT 1 kb)
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