54 research outputs found

    Effect of competitive cues on reproductive morphology and behavioral plasticity in male fruitflies

    Get PDF
    Phenotypic plasticity will be favored whenever there are significant fitness benefits of responding to environmental variation. The extent and nature of the plasticity that evolves depends on the rate of environmental fluctuations and the capacity to track and respond to that variability. Reproductive environments represent one arena in which changes can be rapid. The finding that males of many species show morphological, physiological, and behavioral plasticity in response to premating and postmating reproductive competition (RC) suggests that plasticity is broadly beneficial. The developmental environment is expected to accurately predict the average population level of RC but to be a relatively poor indicator of immediate RC at any particular mating. Therefore, we predict that manipulation of average RC during development should cause a response in plasticity “set” during development (e.g., size of adult reproductive structures), but not in flexible plasticity determined by the immediate adult environment (e.g., behavioral plasticity in mating duration). We tested this prediction in Drosophila melanogaster males by manipulating 2 independent cues of average RC during development: 1) larval density and 2) the presence or absence of adult males within larval culture vials. Consistent with the prediction, both manipulations resulted in the development of males with significantly larger adult accessory glands (although testis size decreased when males were added to culture vials). There was no effect on adult plasticity (mating duration, extended mating in response to rivals). The results suggest that males have evolved independent responses to long- and short-term variation in RC

    Effect of competitive cues on reproductive morphology and behavioral plasticity in male fruitflies

    Get PDF
    Phenotypic plasticity will be favored whenever there are significant fitness benefits of responding to environmental variation. The extent and nature of the plasticity that evolves depends on the rate of environmental fluctuations and the capacity to track and respond to that variability. Reproductive environments represent one arena in which changes can be rapid. The finding that males of many species show morphological, physiological, and behavioral plasticity in response to premating and postmating reproductive competition (RC) suggests that plasticity is broadly beneficial. The developmental environment is expected to accurately predict the average population level of RC but to be a relatively poor indicator of immediate RC at any particular mating. Therefore, we predict that manipulation of average RC during development should cause a response in plasticity “set” during development (e.g., size of adult reproductive structures), but not in flexible plasticity determined by the immediate adult environment (e.g., behavioral plasticity in mating duration). We tested this prediction in Drosophila melanogaster males by manipulating 2 independent cues of average RC during development: 1) larval density and 2) the presence or absence of adult males within larval culture vials. Consistent with the prediction, both manipulations resulted in the development of males with significantly larger adult accessory glands (although testis size decreased when males were added to culture vials). There was no effect on adult plasticity (mating duration, extended mating in response to rivals). The results suggest that males have evolved independent responses to long- and short-term variation in RC

    Exposure time to rivals and sensory cues affect how quickly males respond to changes in sperm competition threat

    Get PDF
    Phenotypic plasticity can increase fitness in rapidly changeable environments, but may be limited if the underlying mechanisms cause a lag between environmental change and individual response or if the information individuals receive is unreliable. Hence to understand the evolution of plasticity we need to assess whether individuals respond to fine-scale variation in environmental cues. In this study we used a Drosophila melanogaster fruit fly model to investigate factors that determine how quickly males alter their behaviour in response to changes in sperm competition cues. Male D. melanogaster respond to exposure to rival males prior to mating by extending mating duration and increasing ejaculate investment. We have previously shown that to build-up the response, males need about 24 h exposure to a rival. We reasoned that this time lag was necessary to increase ejaculate production, but this physiological limitation should not apply when moving from high- to low-competition environments; hence we predicted that males should immediately decrease their investment when competition is removed. Here we tested this by measuring how long rival-exposed males maintained an extended mating duration after removal of the rival. We assessed how exposure time and sensory information affected the speed of change in behavioural state. Males maintained extended mating duration for hours after a rival was removed, but this was dependent on time of exposure to a rival. Furthermore, although sensory-impaired males were able to respond to rivals, the time required for the response to build and diminish depended on males possessing their full sensory repertoire. Our results suggest that males use exposure time and multiple sensory cues to assess whether the threat of sperm competition is transient (so unlikely to translate into realized competition) or sustained (requiring a response). Therefore, time lags between environmental changes and responses may buffer animals against making hasty decisions in fluctuating environments

    Plastic male mating behavior evolves in response to the competitive environment

    Get PDF
    Male reproductive phenotypes can evolve in response to the social and sexual environment. The expression of many such phenotypes may also be plastic within an individual's lifetime. For example, male Drosophila melanogaster show significantly extended mating duration following a period of exposure to conspecific male rivals. The costs and benefits of reproductive investment, and plasticity itself, can be shaped by the prevailing sociosexual environment and by resource availability. We investigated these ideas using experimental evolution lines of D. melanogaster evolving under three fixed sex ratios (high, medium, and low male-male competition) on either rich or poor adult diets. We found that males evolving in high-competition environments evolved longer mating durations overall. In addition, these males expressed a novel type of plastic behavioral response following exposure to rival males: they both significantly reduced and showed altered courtship delivery, and exhibited significantly longer mating latencies. Plasticity in male mating duration in response to rivals was maintained in all of the lines, suggesting that the costs of plasticity were minimal. None of the evolutionary responses tested were consistently affected by dietary resource regimes. Collectively, the results show that fixed behavioral changes and new augmentations to the repertoire of reproductive behaviors can evolve rapidly

    The heritability of mating behaviour in a fly and its plasticity in response to the threat of sperm competition.

    Get PDF
    Phenotypic plasticity is a key mechanism by which animals can cope with rapidly changeable environments, but the evolutionary lability of such plasticity remains unclear. The socio-sexual environment can fluctuate very rapidly, affecting both the frequency of mating opportunities and the level of competition males may face. Males of many species show plastic behavioural responses to changes in social environment, in particular the presence of rival males. For example, Drosophila pseudoobscura males respond to rivals by extending mating duration and increasing ejaculate size. Whilst such responses are predicted to be adaptive, the extent to which the magnitude of response is heritable, and hence selectable, is unknown. We investigated this using isofemale lines of the fruit fly D. pseudoobscura, estimating heritability of mating duration in males exposed or not to a rival, and any genetic basis to the change in this trait between these environments (i.e. degree of plasticity). The two populations differed in population sex ratio, and the presence of a sex ratio distorting selfish chromosome. We find that mating duration is heritable, but no evidence of population differences. We find no significant heritability of plasticity in mating duration in one population, but borderline significant heritability of plasticity in the second. This difference between populations might be related to the presence of the sex ratio distorting selfish gene in the latter population, but this will require investigation in additional populations to draw any conclusions. We suggest that there is scope for selection to produce an evolutionary response in the plasticity of mating duration in response to rivals in D. pseudoobscura, at least in some populations

    The role of complex cues in social and reproductive plasticity

    Get PDF
    Phenotypic plasticity can be a key determinant of fitness. The degree to which the expression of plasticity is adaptive relies upon the accuracy with which information about the state of the environment is integrated. This step might be particularly beneficial when environments, e.g. the social and sexual context, change rapidly. Fluctuating temporal dynamics could increase the difficulty of determining the appropriate level of expression of a plastic response. In this review, we suggest that new insights into plastic responses to the social and sexual environment (social and reproductive plasticity) may be gained by examining the role of complex cues (those comprising multiple, distinct sensory components). Such cues can enable individuals to more accurately monitor their environment in order to respond adaptively to it across the whole life course. We briefly review the hypotheses for the evolution of complex cues and then adapt these ideas to the context of social and sexual plasticity. We propose that the ability to perceive complex cues can facilitate plasticity, increase the associated fitness benefits and decrease the risk of costly ‘mismatches’ between phenotype and environment by (i) increasing the robustness of information gained from highly variable environments, (ii) fine-tuning responses by using multiple strands of information and (iii) reducing time lags in adaptive responses. We conclude by outlining areas for future research that will help to determine the interplay between complex cues and plasticity

    A systematic map of studies testing the relationship between temperature and animal reproduction

    Get PDF
    Funding: This work was funded by the European Society for Evolution (which funds a Special Topic Network on Evolutionary Ecology of Thermal Fertility Limits to CF, AB, RRS and TARP), the Natural Environment Research Council (NE/P002692/1 to TARP, AB and RRS, NE/X011550/1 to LRD and TARP), the Biotechnology and \Biological Sciences Research Council (BB/W016753/1 to AB, TARP and RRS) and a Heisenberg fellowship from the German Research Foundation (FR 2973/11-1 to CF).1. Exposure to extreme temperatures can negatively affect animal reproduction, by disrupting the ability of individuals to produce any offspring (fertility), or the number of offspring produced by fertile individuals (fecundity). This has important ecological consequences, because reproduction is the ultimate measure of population fitness: a reduction in reproductive output lowers the population growth rate and increases the extinction risk. Despite this importance, there have been no large‐scale summaries of the evidence for effect of temperature on reproduction. 2. We provide a systematic map of studies testing the relationship between temperature and animal reproduction. We systematically searched for published studies that statistically test for a direct link between temperature and animal reproduction, in terms of fertility, fecundity or indirect measures of reproductive potential (gamete and gonad traits). 3. Overall, we collated a large and rich evidence base, with 1654 papers that met our inclusion criteria, encompassing 1191 species. 4. The map revealed several important research gaps. Insects made up almost half of the dataset, but reptiles and amphibians were uncommon, as were non‐arthropod invertebrates. Fecundity was the most common reproductive trait examined, and relatively few studies measured fertility. It was uncommon for experimental studies to test exposure of different life stages, exposure to short‐term heat or cold shock, exposure to temperature fluctuations, or to independently assess male and female effects. Studies were most often published in journals focusing on entomology and pest control, ecology and evolution, aquaculture and fisheries science, and marine biology. Finally, while individuals were sampled from every continent, there was a strong sampling bias towards mid‐latitudes in the Northern Hemisphere, such that the tropics and polar regions are less well sampled. 5. This map reveals a rich literature of studies testing the relationship between temperature and animal reproduction, but also uncovers substantial missing treatment of taxa, traits, and thermal regimes. This database will provide a valuable resource for future quantitative meta‐analyses, and direct future studies aiming to fill identified gaps.Publisher PDFPeer reviewe

    Sexual selection in a field cricket

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore