25 research outputs found

    Master of Science

    Get PDF
    thesisLack of information is a serious concern for clinicians. Information resources can address this problem, leading to improvements in decision making and patient outcomes. Genomics is an information-rich domain where searching for information can be complex. For example, most physicians agree that pharmacogenomics can be used to improve the quality of care, and there is evidence that many patients harbor actionable pharmacogenomic variation. However, surveys have shown that physicians feel their knowledge of pharmacogenomics to be inadequate. This represents an information need. A natural approach to meet this need is to provide context-aware access to the precise information needed. The Health Level 7 Context-Aware Knowledge Retrieval Standard, a.k.a the Infobutton, offers a modality to deliver context-aware knowledge into electronic health record (EHR) systems. OpenInfobutton is a reference implementation of this standard that offers an open-source instantiation. In this thesis, we aimed to provide insight into pharmacogenomics information needs and an automated mechanism for addressing these needs. Such work can aid the design of tools that support clinical decisions in genomics

    ADARs have effects beyond RNA editing

    Get PDF

    Functional Transcription Factor Target Networks Illuminate Control of Epithelial Remodelling

    Get PDF
    Cell identity is governed by gene expression, regulated by transcription factor (TF) binding at cis-regulatory modules. Decoding the relationship between TF binding patterns and gene regulation is nontrivial, remaining a fundamental limitation in understanding cell decision-making. We developed the NetNC software to predict functionally active regulation of TF targets; demonstrated on nine datasets for the TFs Snail, Twist, and modENCODE Highly Occupied Target (HOT) regions. Snail and Twist are canonical drivers of epithelial to mesenchymal transition (EMT), a cell programme important in development, tumour progression and fibrosis. Predicted “neutral” (non-functional) TF binding always accounted for the majority (50% to 95%) of candidate target genes from statistically significant peaks and HOT regions had higher functional binding than most of the Snail and Twist datasets examined. Our results illuminated conserved gene networks that control epithelial plasticity in development and disease. We identified new gene functions and network modules including crosstalk with notch signalling and regulation of chromatin organisation, evidencing networks that reshape Waddington’s epigenetic landscape during epithelial remodelling. Expression of orthologous functional TF targets discriminated breast cancer molecular subtypes and predicted novel tumour biology, with implications for precision medicine. Predicted invasion roles were validated using a tractable cell model, supporting our approach

    Solution structure of the N-terminal dsRBD of Drosophila ADAR and interaction studies with RNA

    Get PDF
    Adenosine deaminases that act on RNA (ADAR) catalyze adenosine to inosine (A-to-I) editing in double-stranded RNA (dsRNA) substrates. Inosine is read as guanosine by the translation machinery; therefore A-to-I editing events in coding sequences may result in recoding genetic information. Whereas vertebrates have two catalytically active enzymes, namely ADAR1 and ADAR2, Drosophila has a single ADAR protein (dADAR) related to ADAR2. The structural determinants controlling substrate recognition and editing of a specific adenosine within dsRNA substrates are only partially understood. Here, we report the solution structure of the N-terminal dsRNA binding domain (dsRBD) of dADAR and use NMR chemical shift perturbations to identify the protein surface involved in RNA binding. Additionally, we show that Drosophila ADAR edits the R/G site in the mammalian GluR-2 pre-mRNA which is naturally modified by both ADAR1 and ADAR2. We then constructed a model showing how dADAR dsRBD1 binds to the GluR-2 R/G stem-loop. This model revealed that most side chains interacting with the RNA sugar-phosphate backbone need only small displacement to adapt for dsRNA binding and are thus ready to bind to their dsRNA target. It also predicts that dADAR dsRBD1 would bind to dsRNA with less sequence specificity than dsRBDs of ADAR2. Altogether, this study gives new insights into dsRNA substrate recognition by Drosophila ADAR

    Distance constraints between microRNA target sites dictate efficacy and cooperativity

    Get PDF
    MicroRNAs (miRNAs) have the potential to regulate the expression of thousands of genes, but the mechanisms that determine whether a gene is targeted or not are poorly understood. We studied the genomic distribution of distances between pairs of identical miRNA seeds and found a propensity for moderate distances greater than about 13 nt between seed starts. Experimental data show that optimal down-regulation is obtained when two seed sites are separated by between 13 and 35 nt. By analyzing the distance between seed sites of endogenous miRNAs and transfected small interfering RNAs (siRNAs), we also find that cooperative targeting of sites with a separation in the optimal range can explain some of the siRNA off-target effects that have been reported in the literature

    A role for human Dicer in pre-RISC loading of siRNAs

    Get PDF
    RNA interference is a powerful mechanism for sequence-specific inhibition of gene expression. It is widely known that small interfering RNAs (siRNAs) targeting the same region of a target-messenger RNA can have widely different efficacies. In efforts to better understand the siRNA features that influence knockdown efficiency, we analyzed siRNA interactions with a high-molecular weight complex in whole cell extracts prepared from two different cell lines. Using biochemical tools to study the nature of the complex, our results demonstrate that the primary siRNA-binding protein in the whole cell extracts is Dicer. We find that Dicer is capable of discriminating highly functional versus poorly functional siRNAs by recognizing the presence of 2-nt 3′ overhangs and the thermodynamic properties of 2–4 bp on both ends of effective siRNAs. Our results suggest a role for Dicer in pre-selection of effective siRNAs for handoff to Ago2. This initial selection is reflective of the overall silencing potential of an siRNA

    RNA-Sequencing Analysis of 5' Capped RNAs Identifies Many New Differentially Expressed Genes in Acute Hepatitis C Virus Infection

    Get PDF
    We describe the first report of RNA sequencing of 5' capped (Pol II) RNAs isolated from acutely hepatitis C virus (HCV) infected Huh 7.5 cells that provides a general approach to identifying differentially expressed annotated and unannotated genes that participate in viral-host interactions. We identified 100, 684, and 1,844 significantly differentially expressed annotated genes in acutely infected proliferative Huh 7.5 cells at 6, 48, and 72 hours, respectively (fold change ≥ 1.5 and Bonferroni adjusted p-values < 0.05). Most of the differentially expressed genes (>80%) and biological pathways (such as adipocytokine, Notch, Hedgehog and NOD-like receptor signaling) were not identified by previous gene array studies. These genes are critical components of host immune, inflammatory and oncogenic pathways and provide new information regarding changes that may benefit the virus or mediate HCV induced pathology. RNAi knockdown studies of newly identified highly upregulated FUT1 and KLHDC7B genes provide evidence that their gene products regulate and facilitate HCV replication in hepatocytes. Our approach also identified novel Pol II unannotated transcripts that were upregulated. Results further identify new pathways that regulate HCV replication in hepatocytes and suggest that our approach will have general applications in studying viral-host interactions in model systems and clinical biospecimens

    Editing independent effects of ADARs on the miRNA/siRNA pathways

    Get PDF
    Adenosine deaminases acting on RNA (ADARs) are best known for altering the coding sequences of mRNA through RNA editing, as in the GluR-B Q/R site. ADARs have also been shown to affect RNA interference (RNAi) and microRNA processing by deamination of specific adenosines to inosine. Here, we show that ADAR proteins can affect RNA processing independently of their enzymatic activity. We show that ADAR2 can modulate the processing of mir-376a2 independently of catalytic RNA editing activity. In addition, in a Drosophila assay for RNAi deaminase-inactive ADAR1 inhibits RNAi through the siRNA pathway. These results imply that ADAR1 and ADAR2 have biological functions as RNA-binding proteins that extend beyond editing per se and that even genomically encoded ADARs that are catalytically inactive may have such functions

    Pharmacogenomics information-seeking behavior and the openinfobutton solution

    No full text
    Lack of information is a serious concern for clinicians. Information resources can address this problem, leading to improvements in decision making and patient outcomes. Genomics is an information-rich domain where searching for information can be complex. For example, most physicians agree that pharmacogenomics can be used to improve the quality of care, and there is evidence that many patients harbor actionable pharmacogenomic variation. However, surveys have shown that physicians feel their knowledge of pharmacogenomics to be inadequate. This represents an information need. A natural approach to meet this need is to provide context-aware access to the precise information needed. The Health Level 7 Context-Aware Knowledge Retrieval Standard, a.k.a the Infobutton, offers a modality to deliver context-aware knowledge into electronic health record (EHR) systems. OpenInfobutton is a reference implementation of this standard that offers an open-source instantiation. In this thesis, we aimed to provide insight into pharmacogenomics information needs and an automated mechanism for addressing these needs. Such work can aid the design of tools that support clinical decisions in genomics
    corecore