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ABSTRACT 

 

 

Lack of information is a serious concern for clinicians. Information resources can 

address this problem, leading to improvements in decision making and patient outcomes. 

Genomics is an information-rich domain where searching for information can be 

complex. For example, most physicians agree that pharmacogenomics can be used to 

improve the quality of care, and there is evidence that many patients harbor actionable 

pharmacogenomic variation. However, surveys have shown that physicians feel their 

knowledge of pharmacogenomics to be inadequate. This represents an information need. 

A natural approach to meet this need is to provide context-aware access to the precise 

information needed. The Health Level 7 Context-Aware Knowledge Retrieval Standard, 

a.k.a the Infobutton, offers a modality to deliver context-aware knowledge into electronic 

health record (EHR) systems. OpenInfobutton is a reference implementation of this 

standard that offers an open-source instantiation. In this thesis, we aimed to provide 

insight into pharmacogenomics information needs and an automated mechanism for 

addressing these needs. Such work can aid the design of tools that support clinical 

decisions in genomics.  
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CHAPTER 1 

 

INTRODUCTION 

 

Lack of information is a serious concern for clinicians. Information resources can 

address this problem, leading to improvements in decision making and patient outcomes 

[1]. Our overall goal is to provide insight into pharmacogenomics information needs 

(AIM 1) and an automated mechanism for addressing these needs (AIM 2). Such work 

can aid the design of tools that support clinical pharmacogenomics decisions. Current 

systematic reviews have reinforced the need for research on innovative use of technology 

in the clinical setting to bring pharmacogenomics information to healthcare providers [2–

4]. Underscoring the importance of pharmacogenomics in personalized medicine, an 

estimated 2 million people in the US [5] are documented to have adverse drug effects. In 

addition, adverse effects was the second highest rank among drug topics searched by 

clinicians in a randomized control trial of information delivered by infobuttons [6]. Most 

physicians (98%) agreed in a 2008 survey that pharmacogenomics data can improve the 

quality of care [7]. Indeed, in a recent study, one of five actionable pharmacogenomics 

variants was identified in 90% of patients due to whole-genome-sequencing [8]. 

However, surveys have shown that physicians feel their knowledge of 

pharmacogenomics to be inadequate [7,9], indicating a need for information. 

In assessments of what information should be considered to meet clinicians’ 



2 

 

   

   

information needs, three questions typically serve as a focus of pharmacogenomics 

action: “What to test?,” “When is testing recommended?,” “How does the result impact 

treatment?” [10–14]. The impact of specific test results on treatment is a common goal of 

many efforts [3,4], and is an important aspect of the Clinical Pharmacogenetics 

Implementation Consortium (CPIC) mission integrated in PharmGKB [15,16]. The 

question of “When is testing recommended?” is also valid, as adoption of whole-genome-

sequencing has yet to become universal, and as too many tests [17] or too few tests [18] 

are linked to improper care and increased financial costs. In this thesis, we conducted an 

in-depth exploration of pharmacogenomics information needs of clinicians to see if they 

have needs beyond the three focal needs. Specifically, we aimed to isolate what kinds of 

information are most frequently sought in the clinical setting. 

Attempts have been made to address the perceived three focal information needs. 

Providing answers for “What to test?” and “How does the result impact treatment?” is the 

goal of several efforts [3,4], but less has been done to provide a seamless answer to the 

question “When is testing recommend?” To answer their pharmacogenomics questions, 

physicians often turn to web resources, like UpToDate [19–21] and FDA labels [22]. 

Anticipating this observation, Overby et al.  implemented a pharmacogenomics clinical 

decision support (CDS) tool using the infobutton modality that provide answers for check 

“What to test?” and “How does the result impact treatment?” [23]. While part of the 

development of CDS pharmacogenomics tools, documentation on the availability and 

accessibility of answers for “When is testing recommended?” is difficult to find. One 

approach has been to avoid the question, “When is testing recommended?,” by using a 

committee to provide a directive [12,24] or scheduling a consult with a clinical geneticist. 
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However, these solutions do not scale well, becoming burdensome as more guidelines 

accumulate (currently there are 17 published CPIC guidelines), and leave open questions 

regarding interactions yet to be considered. A scalable and natural approach is to explore 

automatic context-aware retrieval of recommendations found in resources such as 

UpToDate, a key web resource often used by clinicians [19–21]. The Health Level 7 

Context-Aware Knowledge Retrieval Standard, a.k.a the Infobutton Standard, offers a 

modality to deliver context-aware knowledge into electronic health record (EHR) 

systems. We sought to use the HL7 Infobutton Standard to enable context-aware 

information retrieval from genomic knowledge resources. The aims of this current work 

are the following: 

 Aim 1 of this work is to determine the pharmacogenomics information needs 

and seeking behavior of clinicians. Questions investigated are: “What themes 

are emergent?” and “How do physicians search for information?” To 

accomplish this aim we will use case vignettes to probe the pharmacogenomics 

information needs and seeking patterns of clinicians.  

 Aim 2 of this work is to enable standards-based context-aware information 

retrieval of current pharmacogenomics knowledge. The main question 

investigated is: “Are current standards and technology sufficient for integration 

of genomics knowledge with electronic health records?” To achieve this aim we 

will: 

o Assess the readiness of pharmacogenomic resources for adoption of the 

Health Level 7 (HL7) Infobutton (IB) Standard. 
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o Implement a public search interface for genomic knowledge that utilizes 

the HL7 Infobutton (IB) Standard. 

 



 
 

   

   

 
CHAPTER 2 

 

BACKGROUND 

 

2.1 Need for Clinical Pharmacogenomics Information 

  

Pharmacogenomics information is increasingly important in patient care 

decisions. Used correctly, pharmacogenomics tests can alleviate hospitalizations due to 

adverse drug effects of treatment, improve quality of patient care, and reduce financial 

costs [25–30]. Additionally, there is growing evidence that pharmacogenomics testing 

can improve patient adherence to treatment regimens [31,32]. The critical importance of 

pharmacogenomics in personalized medicine is further highlighted in that adverse drug 

events are estimated to affect 2 million people in the US [5]. More specifically, in the 

treatment of asthma with beta-adrenergic receptor agonists, there are several studies that 

recommend that patients who have specific genetic variants, in some cases with specific 

genetic backgrounds, be given an alternative treatment [26,29,30,33]. Current National 

Heart, Lung, and Blood Institute guidelines recommend beta-adrenergic receptor agonists 

as the “drug of choice” [34] for acute asthma symptoms (e.g., asthma attacks). Asthma 

affects around 23 million Americans, and it is estimated that 12 million of US asthma 

sufferers will experience acute symptoms [35]. Thus, the cost of misuse of beta-

adrenergic receptor agonists, only one of many medications with pharmacogenomics 

implications, is likely to be highly significant. 
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2.2 Clinicians’ Need for Pharmacogenomics Information  

 

Physicians have a self-identified lack of pharmacogenomics knowledge and low 

self-efficacy in use of pharmacogenomics tests. Only 10% of physicians nation-wide, 

based on the 2008 National Survey [7], feel that they have adequate understanding of 

pharmacogenomics tests, while 98% believe that pharmacogenomics tests will be 

beneficial to their patients [7]. The lack of understanding suggests low self-efficacy. In 

regards to the theory of self-efficacy, Bandura states that “(e)fficacy beliefs in part 

determine outcome expectations” and that “(m)ost people engage in tasks in which they 

feel competent and confident and avoid those in which they do not” [36]. A more recent 

survey had similar results. Selkirk et al. surveyed physicians at the NorthShore University 

HealthSystem. They found that 11% of physicians considered themselves to have “above 

average to expert knowledge” of pharmacogenomics, while about 51% had no to minimal 

knowledge [9]. Similar results were found for “When and how to incorporate genomic 

medicine into practice.” Thus, physicians may avoid pharmacogenomics testing because 

they feel their pharmacogenomic knowledge is inadequate. In response, attempts have 

been made to better integrate pharmacogenomics information into medical education 

[37], including moves to include personal genomic testing in education [38,39]. Also, 

several consortiums and organizations have been formed to promote usage of 

pharmacogenomics data [28]. However, physicians still feel that they are not adequately 

informed. A more recent survey by Selkirk et al. found that only 11% of physicians at the 

NorthShore University HealthSystem considered themselves to have “above average to 

expert knowledge” of pharmacogenomics, while about 51% had no to minimal 

knowledge [9]. Similar results were found for “When and how to incorporate genomic 
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medicine into practice.”  

Of note, a recent study provided a sense of clinicians’ information needs in 

response to case simulations that included a pharmacogenomics clinical decision support 

system [14]. Devine et al. used a mixed-method approach that included mapping subject 

statements to heuristics and deriving themes from these mappings. The authors found that 

clinicians suffered from a lack of training, but also reported that subjects recommended 

alerts with “dosing guidelines and recommendations.” Three important themes were a 

need for phenotypic interpretations, credibility of the source of information, and 

clinically relevant information.   

 

2.3 Additional Barriers to Using Pharmacogenomics 

 

In addition to self-efficacy, further barriers to usage of guidelines have been 

studied as documented in a systematic review by Cabana et al. They found a significant 

number of articles concerning “awareness (n = 46), familiarity (n = 31), agreement (n = 

33), self-efficacy (n = 19), outcome expectancy (n = 8), ability to overcome the inertia of 

previous practice (n = 14), and absence of external barriers to perform recommendations 

(n = 34)” [40]. A more recent meta-analysis generally agrees and found that for studies 

published after Cabana et al., “in most of the studies, GPs referred to a lack of time to 

read and assess the guidelines” [41]. Typically, clinicians will spend no more than 2 

minutes pursing questions at the point of care [42]. Similarly to medical guidelines in 

general, following recommendations for “when is testing necessary” for 

pharmacogenomics is impacted by a lack of time, awareness of recommendations, lack of 

self-efficacy, and lack of pharmacogenomics knowledge.  
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2.4 Medical Education 

 

Education is one approach for reducing a knowledge gap and improving self-

efficacy. Attempts have been made to integrate pharmacogenomics data into medical 

education [37] and several consortiums and organizations have been formed to promote 

usage of pharmacogenomics data [28]. However, pharmacogenomics education in 

medical school is still inadequate and physicians still feel that they are not adequately 

informed. For example, in a survey of 10,303 physicians in 2012, only 15% of US 

physicians noted that pharmacogenomics was included in their medical education 

curriculum, while 23% received instruction during their postgraduate medical education, 

and only 10% of 10,303 surveyed US physicians are confident that they have adequate 

understanding of pharmacogenomics testing [7].  

Two studies represent a move in medical education to include personal genomic 

testing. An initial attempt was made to educate physicians by offering personal genome 

testing and the study resulted in over 50% of physicians stating that they felt better able 

to advise their patients [39]. However, the utility of the effort was not fully measured. A 

more recent study also saw student interest in genetic testing increase with personal 

genome testing [38]. Both of these efforts were focused on testing in general, not on 

pharmacogenomics nor a specific test.  

 

2.5 Dealing with Information 

 

Knowledge gaps are a significant concern for clinicians that can be addressed 

through seamless access to information resources [43,44], with reported improvements in 

patient outcomes [1,21,45]. Lack of time can also be addressed [6,46–48]. Current 

systematic reviews have further reinforced the need for research on electronic ways to 
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bring pharmacogenomics information into clinical settings [2–4]. To answer their 

pharmacogenomics questions, physicians often turn to web resources, like UpToDate 

[19–21] and FDA labels [22]. Specifically in regards to pharmacogenomics, when asked 

about sources of information for genetic testing and the application in the context of drug 

therapy, 39% of physicians use drug labels [22] and 75% highly valued evidence from 

scientific journal publications [22]. While reasonable sources, FDA drug labels and the 

scientific literature can still lead to incomplete information, confusion, and a lack of 

action evidenced by the fact that of 10,303 physicians surveyed in 2008 only 12% had 

ordered a pharmacogenomics test within the prior six months [7,22]. Thus, a more 

seamless means of providing information is needed. One important consideration for 

effective injection of information into the clinical process is to avoid disrupting it [48]. It 

is not likely that a clinician will be able to process several sources of information, such as 

several electronic resources, at one time. A. Miller emphasizes that the human mind can 

process only seven chunks of information at a time [49,50], and Cohen et al. suggest the 

number is actually four [51]. And for high-stress situations, such as air-traffic controlling, 

a single instruction has been recommended [52]. Thus, prefiltering of electronic resources 

to reduce the bits of information that must be considered supports human information 

processing limitations. Infobuttons are an effective modality for delivering precise 

information content as evidenced by a randomized control trial of information delivered 

by infobuttons [6] carried out by Del Fiol and colleagues. In this trial, the topic of 

“adverse effects” had the second highest rank among topics searched by clinicians, and a 

“high positive clinical impact” was reported by study subjects in 62% of their infobutton 

sessions [6]. Infobuttons can enable more rapid searching for pharmacogenomics 
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information [53,54], and an infobutton manager, tooling that uses the context of an 

information request to choose appropriate resources, can also be used to to reduce the 

amount of information that must be considered. 

 

2.6 Automated Context-Aware Information Retrieval (Health Level 7 

Infobutton) in Genomics 

 

As mentioned, streamlined access to genomic knowledge in the context of patient 

care can be provided through context-aware information retrieval applications called 

infobuttons. This has been proposed by eMERGE [55] and implemented in EHR systems 

[14,53,56]. Implementation of the Health Level 7 Context-Aware Information Retrieval 

application (HL7 Infobuttons) [57] is particularly attractive as it is required in the 

Meaningful Use EHR certification criteria [58]. The Meaningful Use program also 

includes financial incentives to providers who adopt certified EHR products. To date, 

over a thousand EHR products have been certified under the Meaningful Use program 

[59]. Infobuttons translate the context of a patient encounter into a query for information 

to answer specific questions. The answers are retrieved form internet resources, and in 

the HL7 IB standard, the context is provided to the resource in a computable fashion. Use 

of infobuttons has been shown to produce improvements in the speed with which 

clinicians find answers to clinical questions [6], producing a perceived positive impact on 

decision making [6,46,47]. Thus, the use of automated context-aware information 

retrieval is an attractive option to provide the clinician more confidence and time to focus 

on drugs where recommendations are more likely to be present, thus reducing the 

potential for cognitive disruption.  
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2.7 Clinical Pharmacogenomics Implementation Consortium  

(CPIC)/PharmGKB.org an Exemplar Online Resource for  

Meeting Information Needs 

 

As an example of an online resource for pharmacogenomics, the Clinical 

Pharmacogenomics Implementation Consortium has the purpose of providing actionable 

recommendations in pharmacogenomics [60]. They have published several guidelines 

and partnered with the Pharmacogenomics Knowledgebase (PharmGKB.org) to deliver 

their content [60]. The CPIC guidelines provide details on the interpretation of specific 

genetic tests as the test result relates to a specific medication. The discussion is often 

focused on the disease most relevant to the medication. Thus, content from a specific 

guideline could be delivered relative to a specific gene/drug/disease context to answer 

questions on genetic testing.  

 

2.8 Efforts to Meet Perceived Needs 

 

For pharmacogenomics, providing automated accessible information to the 

questions of “What to test?” and “How does the result impact treatment?” is a focus for 

several efforts [3,4], including the Emerge network. But other needs may exist. 

Addressing the question “When is testing recommend?” is especially vital as testing too 

often [17] or not often enough [18] adds significant costs both in patient outcomes and 

financially. Several nonautomated solutions are currently being used to handle the 

question of “When is testing recommend?” For some hospitals and CDS 

pharmacogenomics tool designers, the solution has been to use a committee to decide 

which tests will be implemented [12,24]. Another solution is to consult with a clinical 

geneticist. ARUP has shown that for general genetic testing questions, consult can save 

$48,000 per month [61]. While demonstrating the impact of having an informed answer 
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to the question “When is testing recommended?,”  requiring the service of a genetic 

counselor for every pharmacogenomics decision does not scale well. Critically, not 

enough is known of the ability to meet clinician’s needs beyond “What to test?” and 

“How does the result impact treatment?,”  nor what those needs are. 

Our work addresses the question of what information clinicians seek in 

pharmacogenomics. Also, we provide an implementation of the HL7 IB that delivers 

retrieval from both pharmacogenomics, gene-based, and genetic disease-based content. 

This implementation could be tailored to meet the needs we have uncovered.



 

 

   

   

 
CHAPTER 3 

 

PHYSICIANS’ PHARMACOGENOMICS INFORMATION  

 

NEEDS AND SEEKING BEHAVIOR: A STUDY WITH  

 

CASE VIGNETTES 

 

3.1 Abstract 

 

Genetic testing, especially in pharmacogenomics, can have a major impact on 

patient care. However, most physicians do not feel that they have sufficient knowledge to 

apply pharmacogenomics to patient care. Online information resources can help address 

this gap. Thus, we sought to investigate clinicians’ pharmacogenomics information needs 

and information-seeking behavior and to provide guidance to improve the design of 

pharmacogenomics information resources. To accomplish this objective, we carried out a 

mixed-method assessment of clinicians’ information-seeking process for three 

pharmacogenomics case vignettes. Clinicians’ interactions with online 

pharmacogenomics resources were recorded, transcribed, and analyzed for prominent 

themes. Quantitative data included information-seeking duration, page navigations, and 

pre- and poststudy questionnaires. We found that physicians searched on average for 8 

minutes for pharmacogenomics information and spent less than 30 seconds considering 

content before navigating away. The information needs exhibited by clinicians can be 

summed up by a needs for phenotypic descriptions of test interpretations, molecular basis 
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for the clinical effect of drug variation, information on the logistics of carrying out a 

genetic test (including questions related to cost, availability, test turn-around time, 

insurance coverage, and accessibility of expert support), and an indication of the choice 

of an alternative therapy, along with clear demographic prevalence data. Also, we found 

that when navigating, clinicians were as likely to return to the case vignette as to navigate 

to new content – emphasizing a requirement to retain the search within the context of 

care. To conclude, 8 minutes is longer than can be expected for physicians to search for 

information at the point of care. Also, a pharmacogenomics resource should strive to 

address the themes noted here with topical hyperlinks that lead to information 

presentation consumable in less than 30 seconds. 

 

3.2 Introduction 

 

Pharmacogenomics information is increasingly important in patient care 

decisions. Used correctly, pharmacogenomics testing has the potential to alleviate 

complications due to adverse drug events, improve quality of patient care, and reduce 

financial costs [25–30]. Additionally, there is growing evidence that pharmacogenomics 

testing can improve patient adherence to treatment regimens [31,32]. The critical 

importance of pharmacogenomics in personalized medicine is further highlighted in that 

adverse drug events are estimated to affect 2 million people in the US [5]. For example, 

in the treatment of asthma with beta-adrenergic receptor agonists, studies recommend that 

patients who have specific genetic variants be given an alternative treatment 

[26,29,30,33]. Asthma affects around 23 million Americans, and it is estimated that 12 

million will experience acute symptoms [35]. Thus, the cost of misuse of beta-adrenergic 

receptor agonists, only one of many medications with pharmacogenomics implications, is 
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likely to be highly significant.  

Despite the potential benefits of pharmacogenomics, there are significant barriers 

to the optimal adoption of pharmacogenomics information in routine patient care 

decisions. Physicians have a self-identified lack of pharmacogenomics knowledge and 

low self-efficacy in use of pharmacogenomics tests. Only 10% of physicians nation-wide, 

based on the 2008 National Survey [7], feel that they have adequate understanding of 

pharmacogenomics tests, while 98% believe that pharmacogenomics tests will be 

beneficial to their patients [7]. In response, attempts have been made to better integrate 

pharmacogenomics information into medical education [37], including education on 

personal genomic testing [38,39]. Also, several consortiums and organizations have been 

formed to promote usage of pharmacogenomics data [28]. However, physicians still feel 

that they are not adequately informed. A more recent survey by Selkirk et al. found that 

only 11% of physicians at the NorthShore University HealthSystem considered 

themselves to have “above average to expert knowledge” of pharmacogenomics, while 

about 51% had no to minimal knowledge [9]. Similar results were found for “When and 

how to incorporate genomic medicine into practice.”  

Knowledge gaps are a significant concern for clinicians that can be addressed 

through online information resources [43,44], which have demonstrated improvements in 

provider decisions and patient outcomes [1,45,62] [6,46–48]. Recent systematic reviews 

have further reinforced the need for research on electronic ways to bring 

pharmacogenomics information into the clinical setting [2–4]. To answer their 

pharmacogenomics questions, physicians often turn to Web-based resources, such as 

UpToDate [19,20,62] and US Food and Drug Administration (FDA) drug labels [22]. 
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Additionally, groups such as the Clinical Pharmacogenetics Implementation Consortium 

(CPIC) have published guidelines on pharmacogenomics testing [60]. Despite the 

availability of these resources, a survey of 10,303 physicians in 2008 showed that only 

12% had ordered a pharmacogenomics test within the prior six months [7,22]. This low 

use may be partially due to barriers that limit seamless access to information that can help 

guide physicians in the use of pharmacogenomics. To help guide the design of delivery of 

content from clinical pharmacogenomics resources, we investigated physicians’ 

information needs and information seeking behavior when exposed to pharmacogenomics 

case vignettes.  

 

3.3 Methods 

 

A mixed-methods study with case vignettes was designed to capture physicians’ 

information needs and information-seeking behavior related to genetics. The study 

consisted of a prestudy survey, three case vignettes to prompt information seeking, a 

poststudy survey, and a short poststudy interview. 

 

3.3.1 Case Vignette Design 

 

Three case vignettes were designed through examining existing case vignettes 

(case 1: [63–66]), guidelines (case 1: [67]; case 2: [30,68,69]; case 3: [70,71] ) and 

iteratively refined and validated by a clinical domain expert. Each vignette consisted of a 

case narrative and prompted for a pharmacogenomics information search. Vignettes can 

be found in the online supplement. Table 3.1 summarizes the cases.  
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Table 3.1 Case vignette summary 

Case 

Vignette 

Disease or 

Condition 

Medication 

Focus 
Problem Patient 

Main 

Information- 

Seeking 

Driver 

1 Guacher’s 

disease 

Enzyme 

Replacement 

Therapy 

 

Hereditary risk Prospective child of at 

risk parents 

Parents desire 

to be prepared 

2 Asthma Albuterol Worsening 

symptoms 

while on 

treatment 

Pediatric male, no 

apparent environmental 

factors, twin sister with 

same problem 

 

Father’s 

concern 

3 Percutaneous 

coronary 

intervention 

Clopidogrel Loading dose 

prescription 

65 –year old male, past 

smoker, no history of 

bleeding or increased 

clotting 

 

Patient’s 

concern 

 

 

3.3.2 Data Collection 

 

The data collection instruments are included in the online supplement. Subjects 

were first asked to fill out a prestudy survey, which asked for demographic data, 

experience with internet resources, as well as attitudes about and experience with 

pharmacogenomics. The prestudy survey included questions from a survey previously 

used by Stanek et al. [7] and questions used by Del Fiol [72]. Next, subjects were 

presented each of the vignettes and were asked to search for relevant information from 

UpToDate (all cases) and PharmGKB (case 3). Subjects were asked to think aloud and 

share their thoughts as they sought information. Audio and computer screen interactions 

were recorded while subjects sought information in response to each case vignette. While 

subjects sought information, one of the authors (BH) took notes to help with the short  

postsession interview. After the second and third cases, subjects filled out a brief post-

study survey adapted from Del Fiol et al. The survey included seven questions. Three 
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questions were open-ended: “What is your final answer to the case vignette?,” “Could 

you please summarize in 1-2 sentences the gist of the evidence that guided your 

decision?,” and “What other types of information could have helped you?” Four 

questions were Likert scale questions, two on the complexity and experience with the 

case vignette, and two regarding the information found. After the third case, BH carried 

out a short interview using the audio/computer screen recording and notes to elicit details 

of the information seeking experience. Each session lasted between 50 to 90 minutes. 

 

3.3.3 Qualitative Data Analysis  

 

The think aloud audio and poststudy interviews were transcribed and time-

stamped. Then a process consistent with content analysis as described in Berg et al. [73] 

was carried out. Initially, BH performed open coding for one subject using both the audio 

transcripts and the computer screen recordings. “Berry-Picking,” as described in the 

following section, was used as a theoretical framework. After the initial open coding, BH 

and GDF refined the initial codes for inclusion into a study code book for further use. For 

reliability and validity, BH and AK coded each subject independently and iteratively 

reconciled disagreements through consensus with a third researcher (GDF). Overall, there 

were 42 need codes identified. These can be found in the appendix. In the last stage, BH 

and AK performed a thematic analysis by merging similar codes into higher level themes. 

A candidate set of themes was then refined through discussions among BH, GDF, and 

BS. Thematic analysis was also carried out on the open-ended questions from the post-

study survey. 
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3.3.4 Theoretical Framework Guiding Data Analysis  

 

Coding was guided by a model of information seeking called “Berry-Picking” 

[74]. According to the “Berry-Picking” model, an information-seeking experience starts 

with an information need. Then the subject exercises strategies to satisfy the information 

need, seeking locations of information that are compared to “berry” patches. As the 

subject finds relevant “berries,” the understanding of the problem improves, leading to 

more refined and specific information-seeking strategies. The process continues 

iteratively with the subject posing progressively more sophisticated inquiries. Berry-

picking is applicable in situations where the information seeker is not an expert in the 

subject of interest, which may be the case when primary care physicians seek new 

information on pharmacogenomics for a specific patient. We used the strategies, 

locations, and information berries to determine subjects’ information needs. 

 

3.3.5 Quantitative Data Analysis 

 

To describe quantitatively the information-seeking behavior of clinicians in our 

study, we computed median, average, range, and standard deviation for the following 

measurements: the time spent by each physician on information seeking, the time 

between navigational actions such as clicking links or tabs, number of tabs or links 

clicked, and the number of searches entered. The time between clicks represents the time 

subjects spent on content before leaving to other content. 

 

3.3.6 IRB approval  

 

This study was reviewed and approved by the University of Utah Institutional 

Review Board as exempt (IRB_00075761). 
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3.4 Results 

 

Six physicians, five males and one female, participated in the study. Three 

subjects were in the 30-39 years of age category, two were 40-49 years-old and one was 

60-69 years old. In general, subjects were pediatricians and internists. Years in clinical 

practice ranged from 2 to 36 years, with an average of 13.8 years.  

 

3.4.1 Prestudy Survey - Pharmacogenomics Experience and Attitudes 

 

Subjects were proficient in using the internet and UpToDate, but none were 

familiar with PharmGKB. All subjects felt that genetics can influence response to 

treatment, but only one of six felt adequately informed about genetic testing. Only one 

subject had education in pharmacogenomics. Five subjects stated that colleagues were the 

source of routine pharmacogenomics information. Only two subjects indicated that the 

internet was their routine source of pharmacogenomics information and had actual 

pharmacogenomics testing experience within the previous six months. All subjects 

indicated that private, state, and federal health insurers should provide full coverage for 

pharmacogenomics tests, at least in some cases. 

 

3.4.2 Themes 

 

The qualitative analysis revealed 11 themes that could be further merged into 6 

categories (Table 3.2).  

 

3.4.2.1 Alternative Therapy Options 

 

Subjects indicated that, prior to proceeding to ordering a genetic test; they needed 

evidence and recommendations for alternative treatments to consider. Subjects sought 

evidence that alternative treatments could be used effectively and safely without 
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Table 3.2 Information needs and information seeking categories and themes 

Category Theme  

Is there an alternative therapy that obviates the 

need for genetic testing? 

Alternative therapy options 

Clear, reliable guidance on genetic testing: when 

and how 

Specific, actionable, clinical guidance from 

authoritative sources 

Guidance on optimal approach to genetic testing 

Logistics of testing 

 

How often might genetic testing be indicated? Prevalence of genetic variation 

Indications for genetic testing 

How important is genetic testing to care of my 

patient and what is the evidence? 

Clinical impact of genetic testing 

Practice changing evidence 

Help in understanding genetic effects Role of genetics in the manifestation of the disease 

Understanding general molecular effect of genetic 

variant 

Aid in searching for information Help with search terms 

 

 

requiring a genetic test or they wished to have evidence that such an alternative therapy 

was not available. 

For example, subject 5 sought a recommendation “…telling you to just be using 

another option in him or does [the patient] have a particular contraindication to just doing 

alternate therapy [that] I’m supposed to pick up on, instead of doing any testing on him.” 

Similarly, a different subject expressed that “ideally, what I am thinking is to maybe just 

change the therapy and regimen… just switch to something else.”  

 

3.4.2.2 Specific, Actionable, Clinical Guidance from Authoritative Sources 

 

Subjects need an authoritative, “bottom-line” recommendation. For example, 

subject 3 stated, “with the authorities, with the experts, with the review of the literature, 

American Heart Association and the rest, where they will be saying, “You know, you 
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know guys you ought to test these guys, because you are [going to] lower your risks 

related to putting that stent in and the clotting stuff that might mess you up.” That’s what 

I was looking for.” Similarly, subject 3 was “going for a bottom-line.” Additionally, 

consult with a specialist was considered as evidenced by subjects navigating to and 

examining available “Genetic Counseling” sections.   

 

3.4.2.3 Guidance on Optimal Approach to Genetic Testing 

 

Subjects wanted know the best genetic test to use. For example, subject 3 

mentioned “I'm not finding anything that is like a straightforward test…,” and subject 5 

stated they were “looking for if there were any indication that I should select a particular 

genetic test option.”  

They were also curious about choosing one approach over the other, evidenced by 

subject 6 stating “genotyping may miss some of those loss of function alleles. And, I just 

find it interesting that it is a footnote because it seems rather important to me.” 

 

3.4.2.4 Logistics of Testing 

 

Subjects also wanted information on whether or not they could order a test in their 

system, the test turn-around time, and considered both cost and proximity of an expert. 

For example, subject 4 mentioned “first, I’d have to find out if a test even exists and how 

much it costs.” And subject 4 asked “how fast can we make the genomic test actually be 

available?” Getting a test result in time to make decisions was a concern. For example, 

subject 3 asked “But can they turn [the genetic test] around? You would have to know, I 

mean, if the guy is going to have the stent the next day.” Subject 3 wondered if the result 

could be achieved “in half an hour with DOT-Blot-PCR.” 
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Other cost considerations were expressed by subject 3 during the postsession 

interview: “Other information that could have helped me? Ah, knowing the prevalence of 

the CYP2C19 mutations in the general population and in subset populations, knowing if 

the patient had had family members with known difficulty in metabolizing medications, 

cost of the test, availability of the test, turnaround time of the test.” Subject 1 voiced a 

perception that the financial cost is high by indicating that the subject would order a test 

“if this guy is rich and wants to be parted with some of his money…” 

Subject 6 also mentioned concern regarding the proximity to a specialist “but if 

you have implications to a child’s wellbeing and maybe mortality …and I have the 

resources here, I use them…that’s sort of a bit harder if you are asking your family to 

drive 400 miles to a pharmacogenetic counselor.” 

 

3.4.2.5 Prevalence of Genetic Variation 

 

Information on prevalence of genetic variation was also sought; both for the 

population in general, for the ethnic group the patient belonged too, and in the patient’s 

family. For example, subject 4 stated “it doesn't really tell me what percentage of the 

population has an issue with CYP2c19.” Along these lines, subject 6 stated “…just how 

many individuals do I need to test before I find…individuals who either metabolize 

rapidly or poorly.” And for the case on Gaucher’s disease, subject 6 remarked “But of 

course, there are Ashkenazi ethnicities that live in Scandinavia.” 

The following demonstrates subject 4’s use of family history. When asked “is that 

important?” in relation to highlighting autosomal co-dominant during case 2, subject 4 

responded “It is important because… if there had been a pure autosomal dominant, 

maybe you would actually have a family history of something that would be relevant.”  
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3.4.2.6 Indications for Genetic Testing 

 

Subjects sought information on the patient characteristics that indicate a benefit or 

imperative for testing. For example, subject 5 remarked, “the information that I was 

looking for the whole time that I didn’t feel like I really found in a really concentrated 

way, was here are the risk factors that you as the clinician [want to] be looking for in 

your own patient that is [going to] send you over the edge to actually get genetic testing.” 

Subject 5 stated that they wanted “a bulleted list that says risk factors for testing.” 

Additionally, subject 3 stated “…some instance group where you were to tell me that that 

gentleman needed to be tested before he had a stent put in. That’s what I was searching 

for.” Also, when subject 5 was asked what they were looking for when they highlighted 

“select populations” in the CPIC guidelines, subject 5 responded “same thing that I 

wanted the whole time…what is this selected patient population…“ 

 

3.4.2.7 Clinical Impact of Genetic Testing 

 

Subjects wanted to know if carrying out a genetic test would have clinical impact. 

Impact was indicated by the manifestation of treatment failure. For example, subject 6, 

after having entered in a search term containing a drug and gene name, focused on the 

sections of UpToDate that defined “resistance” and “nonresponsiveness” to treatment. 

When asked about this focus, subject 6 said they were “trying to understand the relevance 

of the HPR [high on-treatment platelet reactivity] to the therapeutic intervention.” HPR is 

an indication of treatment failure.  

Impact was measured by the actions needed to address treatment failure. For 

example, in case 2 while looking at information on asthma exacerbation, subject 3 

remarked “asthma exacerbation in children, that might be a good start…I'm looking for 



25 

 

   

   

something that…oh, management criteria...” 

Also, impact was understood from the change in treatment course that could result 

from the genetic test, for example, subject 3 exclaimed “…so, they're suggesting another 

drug for intermediate metabolizers.” 

Further, impact was measured by the effect of ignoring genetic testing in specific 

situations, i.e., the effect of a genetic variation on the likelihood of treatment failure, and 

likelihood of severe side-effects. This was evidenced by subject 3 examining the effects 

of medication resistance and treatment failure, and by subject 1 remarking, “I like this 

failure thing because I wonder if that might have something to do with...if the genetics 

might have something to do with failure…severity of.” Additionally, subject 2 stated “I 

wanted to look at what information there was about patients with asthma and albuterol 

and how their genetic profile affects albuterol. And I just wasn’t seeing a search that was 

really jumping out at me at the time.” Subject 2 went on to say “I was hoping that I would 

see something like albuterol failure in asthma, or issues associated with treatment, or 

treatment failure in asthma, or something like that. And then when I clicked on that link, 

there [would be] a sub-tab like genetic issues or genetic variance or something like that.” 

Finally, impact of genetic testing was measured by an explicit connection between 

the test result and a phenotype of the patient. Subject 6 stated, “UpToDate suggested ah, 

at least based on my reading that um, that ah, ah, genotypic testing is in most cases um, 

not helpful or difficult to interpret. Whereas here [Clinical Pharmacogenomics 

Implementation Consortium guideline] I’m seeing, you know, recommendations that are 

strong… you know, based on a genotypic classification suggesting, well, a phenotype 

that has relevance to your therapeutic intervention.” 
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3.4.2.8 Practice Changing Evidence 

 

Subjects were looking at evidence not only for assurance that an association 

existed but also for assurance that the association was practice changing. Subjects looked 

for succinct, strongly worded statements from authoritative sources as practicing 

changing evidence. This idea is typified by the statement from subject 6, “But essentially 

you know whenever [the] clinical literature says “data suggests” or “maybe relevant,” 

that sort of thing, you realize that the evidence basis is still in its nascence. It may still be 

weak.” 

Evidence could also be drawn from the phenotypic explanation of manifestations 

of resistance or disease. For example, subject 6 while using the mouse to highlight 

implications for clopidogrel treatment of poor metabolizers in Table 2 of the CPIC 

guidelines, where it also says the level of evidence is strong, stated “briefly reading this, 

this group suggests that there is benefit to looking at CYP2C19 status.” Further, 

indications for treatment made subject 4 “hopeful that that meant the guideline updates 

were down there somewhere that directed the actual testing recommendations.”  

Additionally, evidence came in the form of evidence-based routine 

recommendation for testing. For example, subject 5 while browsing the results of the 

ARTIC-Monitoring trial noted “almost 2500 patients” and later read-aloud “do not 

recommend routine testing.” Also, subject 3 noted “it is not completely clear in my mind 

yet about the evidence for doing the testing for the variants…how standard that is and 

how clear that is.” Finally, subject 1 was left to conclude “the summary did not have any 

recommendations. It had a summary of the data but the data was too far removed from 

me actually being able to take one step or another,” and subject 6 stated “I liked that it 
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was, for the clinical question we had, simpler and more succinct than UpToDate. But it 

seemed that…they [Clinical Pharmacogenomics Implementation Consortium guideline] 

were more confident in the evidence base than the final summary recommendation in 

UpToDate.”  

Interestingly, subject 1 commented that it was important to know how often the 

patient’s specific demographic was included in the evidence for genetic testing 

interpretations, “if they are unrepresented in the studies, then how am I going to know 

how …to interpret this. I am liable to come back with something that says “we do not 

have enough information.” 

Finally, evidence was sought from randomized controlled trials supporting the 

hypothesis that a specific genetic test improves patient outcomes compared to 

alternatives. For example, subject 2 highlighted through reading aloud “then on the 

RAPID GENE study, 200 patients undergoing PCI were randomly assigned to either a 

rapid point of care genotyping for the CYP2C allele given...” when looking for 

information. 

 

3.4.2.9 Role of Genetics in the Manifestation of the Disease 

 

In looking at drug-disease pairs and genetics, subjects sought to determine if 

genetics had been associated with the symptoms and prognosis of the disease. For 

example, subject 3 stated “I would want to know about the genetic variant effects that are 

associated with worsening asthma symptoms” and was looking for a statement that 

“might have said that there was a genetic predisposition to worsening symptoms.”  

In the case of Gaucher’s disease, a subject found that the manifestation of disease 

is inherited, “So it says Gaucher is divided into types and I wanted to know what the 
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types are, because each type is associated with a genetic variant, and certain genotypes or 

a descent ancestry are more common in others. So I wanted to know with Ashkenazi Jews 

what type of Gaucher’s disease do they have and in terms of severity, I looked at the 

severity based upon critical manifestations of these diseases.” 

 

3.4.2.10 Understanding General Molecular Effect of Genetic Variant 

 

Subjects needed to know how to understand the molecular change and the 

ramification on protein activity. For example, subject 6 remarked “…trying to recall my 

molecular biology…and ah, what is a missense mutation.” 

 

3.4.2.11 Help with Search Terms 

 

Subjects sought guidance on constructing search terms, such as the correct 

spelling of a gene name, useful synonyms, or medication specific detail. Key search 

terms were considered gateways to satisfying information needs. For example, subject 4 

copied and pasted the CYP2C19 as a search term to aid the process. Similarly, subject 5 

remarked on the difficulty of gene names, “I can remember clopidogrel as an entire word, 

and CYP2C19, whatever the numbers are, I had way harder time keeping in my brain… I 

can remember a word much better than a random function of a gene.” Additionally, 

subject 6 reflected “I should have put in β2-agonist in front of pharmacogenomics or 

something like that.” Finally, as subject 6 put it, “98 times out of 100, I get a couple of 

search terms that I can screen down, I can find out exactly what I want to go to very 

quickly.” 
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3.4.3 Time spent on Case Vignettes/ Query Entry 

 

Subjects spent a median of 7 minutes per case searching for information (Table 

3.3). During the search for information, subjects used browser tabs and hyperlinks 

(median of 8.5 clicks per case) to navigate to different pages or different sections within a 

page. The median time interval before navigating was 28 seconds, but it ranged widely 

from 3 seconds to 8:27 minutes. In 9 out of the 18 information-seeking sessions (3 

sessions per subject), subjects performed only one search, but could perform as many as 8 

searches. 

 

3.5 Discussion 

 

We investigated physicians’ pharmacogenomics information needs and 

information-seeking behavior when presented with three case vignettes on 

pharmacogenomics testing. Strengths include a mixed-method approach, with rigorous 

thematic analysis of recorded information-seeking interactions and deepening interviews. 

Overall, the analyses revealed that clinicians posed a wide variety of information needs 

and had significant challenges finding answers to these needs in online clinical resources,  

 

Table 3.3 Measures of information seeking time and effort.  

Measurement Range Median Average +/- sd 

Information seeking session 

duration (minutes) 

2:41 to 15:08  7:14 8:22 +/- 3:57 

Time prior to page navigation 

(minutes) 

 

0:03 to 8:27 0:28 0:53 +/- 1:10 

Number of page navigation events 

per subject 

 

1 to 18 8.5 8 +/- 4.8 

Number of Searches  1 to 8 1.5 2.3 +/- 1.9 
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spending an average of 8 minutes seeking information for each case vignette. Previous 

studies have shown that clinicians will not spend more than 2 minutes searching online 

resources at the point of care [42]. Thus, our results suggest that seeking 

pharmacogenomics guidance in today’s online resources may not be feasible for most 

clinicians. Our study findings provide guidance to improve the design of online resources 

in order to reduce barriers to using pharmacogenomics information in patient care 

decisions.  

As expected, subjects looked for evidence on the clinical impact of genetic 

testing. In addition, physicians were interested in how genetic variants affect their 

patients’ health, such as phenotypic descriptions of test interpretations, similarly to 

Devine et al. [14]. This also agrees with the finding that 80% of physicians would include 

information on how genetic variation alters drug activity in their ideal pharmacogenomic 

resource [75]. Less expected, subjects also sought information to address knowledge gaps 

in genomics, such as understanding the molecular basis for the clinical effect of drug 

variation.  

In addition to clinical evidence, clinicians also showed a need for information on 

the logistics of carrying out a genetic test, including questions related to cost, availability, 

test turn-around time, insurance coverage, and accessibility of expert support. In general, 

this finding is in agreement with both a recent American Medical Association (AMA) 

survey [75] and a study on a pharmacogenomics clinical decision support system [14]. 

Interestingly, 63% of the physicians in the AMA survey agreed that a list of the 

laboratories offering testing and indications of insurance coverage are features of an 

“ideal pharmacogenomic educational resource” [75].  
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We also observed that clinicians sought alternative approaches, which would 

obviate the need to consider genetic testing. It is possible that a sense of low self-efficacy 

and information overload may lead physicians to avoid genetic testing decisions. This is 

not unexpected, as “escape” is a known strategy for dealing with information overload 

[44,76]. This is further highlighted by the themes of “Prevalence of genetic variation “ 

and “Indications for genetic testing.” Subjects wanted to know if genetic testing was 

something they would need to worry about on a regular or irregular basis, in addition to 

tailoring care to their current patient. Interestingly, 77% of respondents of the AMA 

survey would include “demographics of populations likely to carry variations” in their 

ideal information system [75]. Thus, our results indicate that clear indication of the 

choice of an alternative therapy, along with clear demographic prevalence data, would be 

very useful in a pharmacogenomics information resource. 

On average, subjects navigated to eight different content sections or pages per 

case vignette. This finding is consistent with the “berry-picking” information seeking 

pattern, in which searchers “pick” pieces of information in different locations to form a 

mental “picture” of the situation. Information resources could be designed in a way that 

facilitates the berry-picking approach in one content view, rather than requiring users to 

navigate to multiple pages.  

Rather than refining search terms, subjects preferred to rely on hyperlinks to 

navigate to content in different pages or sections. This finding may suggest the need for 

improvements both in the search process, since clinicians are less likely to refine their 

search strategy, and in the provision of more meaningful content headings and hyperlink 

labels. Also, it is notable that subjects often navigated back and forth between the case 
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vignette narrative and online resources. The case vignette is a surrogate for an electronic 

health record (EHR), suggesting that subjects will need to refer back to patient data 

almost as often as new content. For design, this indicates that merging the display of 

online resources with the EHR can reduce navigation effort and reduce short-memory 

overload. Additionally, subjects typically spent less than 30 seconds considering a 

specific piece of content before navigating to other content. This suggests that 

information presented to clinicians should be consumable in less than 30 seconds.  

 

3.6 Limitations 

 

Limitations include a convenience sample of six physicians, most of them in 

pediatrics. In addition, subjects were not imposed any time constraints in the information-

seeking sessions. Searching under the time pressure of typical clinical settings would 

likely affect search behavior. Yet, not imposing time constraints allowed us to observe a 

wide range of clinicians’ information needs and the entire information-seeking process. 

Finally, by constraining to UpToDate (all cases) and PharmGKB (for case 3), we focused 

the subjects on the search for information within a resource and not on the choice of 

which resource to search. 

 

3.7 Conclusion 

 

Correct application of pharmacogenomics testing can avoid complications of 

adverse drug events, improve care, reduce financial costs [25–30], and improve patient 

adherence [31,32]. However, most physicians, including those in our study, do not feel 

confident in their knowledge of pharmacogenomics. Searching for information is quite 

challenging, as evidenced in our study. Physicians searched for information for an 



33 

 

   

   

average of 8 minutes, far exceeding the 2 minutes expected to be spent at the point of 

care to purse questions [42]. We found that physicians’ information needs fall into eleven 

themes: 1) Alternative therapy options, 2) Specific, actionable, clinical guidance from 

authoritative sources, 3) Guidance on optimal approach to genetic testing, 4) Logistics of 

testing, 5) Prevalence of genetic variation, 6) Indications for genetic testing, 7) Clinical 

impact of genetic testing, 8) Practice changing evidence, 9) Role of genetics in the 

manifestation of the disease, 10) Understanding general molecular effect of genetic 

variant, and 11) Help with search terms. Based on our themes, we would recommend that 

a clinical decision support system, or pharmacogenomics resource, provide topically 

labeled hyperlinks that lead to brief snippets on: phenotypic descriptions of test 

interpretations, molecular basis for the clinical effect of drug variation, the logistics of 

carrying out a genetic test (including questions related to cost, availability, test turn-

around time, insurance coverage, and accessibility of expert support), an indication of the 

choice of an alternative therapy, and demographic prevalence data. This information 

should be consumable within 30 seconds and be provided with the clinical context in 

view. Further study is needed to learn to what extent the themes found generalize, as our 

formative evaluation was limited to six physicians primarily with pediatric experience, 

and case vignettes. Lastly, it would be very interesting to learn how incorporation of our 

themes into a CDSS would lead to more effective use of pharmacogenomics.  



 
 

   

   

 
CHAPTER 4 

 

INTEGRATING GENOMIC RESOURCES WITH  

 

ELECTRONIC HEALTH RECORDS USING  

 

THE HL7 INFOBUTTON STANDARD
1
 

 

4.1 Abstract 

 

The Clinical Genome Resource (ClinGen) Electronic Health Record (EHR) 

Workgroup aims to integrate ClinGen resources with EHRs. A promising option to 

enable this integration is with the Health Level Seven (HL7) Infobutton Standard. Our 

objective in this study is to integrate genomic knowledge resources using the HL7 

Infobutton Standard. Two tactics to achieve this objective were creating an HL7-

compliant search interface for ClinGen, and proposing guidance for genomic resources 

on achieving HL7 Infobutton Standard accessibility and compliance. To meet our 

objective, a search interface was built utilizing OpenInfobutton, an open source reference 

implementation of the HL7 Infobutton Standard. Additionally, ClinGen resources were 

assessed for readiness towards HL7 compliance. Finally, based upon our experiences, we 

provide recommendations for publishers seeking to achieve HL7 compliance. As a result, 

eight genomic resources and two sub-resources were integrated with the ClinGen search 

engine via OpenInfobutton and the HL7 Infobutton Standard. Also, we found that

                                                           
1
 Reformatted and reprinted with permission from Schattauer GmbH Publications in accordance with the 

“Schattauer copyright permission and self-archiving policy for journal author,” June 2016 
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resources have varying levels of readiness towards HL7-compliance, and that adoption of 

standard terminologies used by EHR systems is the main gap to achieve compliance. In 

conclusion, EHR systems that are certified according to the US Meaningful Use program 

provide HL7-compliant infobutton capabilities, which can be leveraged to support 

clinical decision-making in genomics. Further, genomic resources can be integrated with 

EHR systems via the HL7 Infobutton Standard using OpenInfobutton. Finally, full 

compliance of genomic resources with the Infobutton Standard would further enhance 

interoperability with EHR systems.   

 

4.2 Background and Significance 

 

Clinical genomics is considered an important, complex, rapidly increasing 

knowledge domain [77]. Integration of clinical genomics into medical practice is highly 

desirable, but the need for clinical guidance is significant, as indicated by the US 

National Human Genome Research Institute (NHGRI) director [78] and the American 

College of Medical Genetics and Genomics Board of Directors [79]. Further, the 

President of the United States highlighted the importance of genomics in precision 

healthcare in his 2015 State of the Union address. The challenging juxtaposition of 

complexity, growth, and importance in clinical genomics can lead to difficulty in 

knowledge management, producing gaps in information. When the need for information 

is not satisfied, this can result in medical error or reduced quality of care [80,81]. Online 

medical knowledge resources offer a possible solution for satisfying information needs 

[44,78]. It has been demonstrated that online resources provide answers for greater than 

90% of clinicians general patient care questions [82], and there is good evidence that 

searching electronic resources for information can have positive effects on clinical 
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decision making [6,45,62,83].  

To support information needs in clinical genomics, the Clinical Genome Resource 

(ClinGen) was established to “provide high quality, curated information on clinically 

relevant genes and variants” [84]. The ClinGen Electronic Health Record Work Group 

(EHR WG) has been tasked with providing integration between EHRs and genomics 

resources, including future ClinGen resources. As such, the ClinGen EHR WG in 

conjunction with other ClinGen domain experts has produced a website containing links 

to several genomics resources thought to be of value in particular contexts. Specifically, 

the links are organized for different end users (Clinician, Researcher, Laboratory, and 

Patient) under a clinical activity classification, such as point of care or “just in time” 

education. Many of these resources are developed by or are accessible through the 

National Center for Biotechnology Information (NCBI) at the National Institutes of 

Health [85]. The NCBI offers a rich aggregation of clinical genomics resources, 

supporting a wide-range of specialization. However, searching many genomic resources 

and learning how to optimally use each resource is time-consuming and unfeasible for 

most busy clinicians. Importantly, in pursuing answers to clinical questions, clinicians 

note that lack of time and seamless access to resources at the point of care are the main 

barriers [86]. Thus, a solution is needed to streamline point of care access across the 

landscape of genomic resources.  

As discussed by the eMERGE network in its efforts to aid content authoring [55], 

and previous implementations within EHR systems [14,53,56], infobuttons are an 

information retrieval modality that can address the need for streamlined access to 

genomic knowledge in the context of patient care. In the clinical setting, infobuttons are 
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used to translate the context of a particular patient encounter into a request for 

information related specifically to that context from the web’s plethora of electronic 

resources (e-resources). Infobuttons have been shown to improve the speed with which 

clinicians find answers to clinical questions [6], producing a positive impact on decision 

making [6,46,47]. Thus, infobuttons offer an attractive tool to improve clinicians’ access 

to genomic knowledge, even at the point of care. 

Further motivation to pursue infobuttons for dissemination of genomic knowledge 

is linked to the US Meaningful Use EHR certification criteria, which includes a 

requirement [58] for implementation of the HL7 Infobutton Standard [57]. The 

Meaningful Use program also includes financial incentives to providers who adopt 

certified EHR products. To date, over a thousand EHR products have been certified under 

the Meaningful Use program [59].   

 

4.3 Objective 

 

EHR In order to facilitate EHR access to genomic resources, the ClinGen EHR 

WG decided to develop an infobutton-enabled search interface, compliant with the HL7 

Infobutton Standard (HL7 IB). The overall goal of the present study is to describe the 

implementation of the search interface, which leverages an open source, HL7-compliant, 

infobutton platform called OpenInfobutton. Specifically we aimed to: 1) develop an 

OpenInfobutton enabled search engine; 2) configure OpenInfobutton to access a subset of 

ClinGen genomic resources; 3) analyze readiness of this set of genomics resources 

regarding the HL7 IB standard; and 4) provide recommendations for publishers to 

achieve HL7 IB compliance.  
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4.4 Methods 

 

4.4.1 HL7 Infobutton Standard and OpenInfobutton 

 

An infobutton is a context-aware information retrieval tool that anticipates the 

information needs of a clinician in a specific clinical context and provides automated 

links to relevant e-resources [87]. For example, in the context of prescribing clopidogrel 

in the outpatient setting for a 67 year-old female with a history of stroke, a simple 

infobutton could provide access to a statement from the American College of Cardiology 

related to clopidogrel treatment for female patients with a history of stroke.  

Infobuttons are typically implemented with a web service known as an 

“Infobutton manager” (IM) [88,89]. Infobutton managers match the context conveyed in 

an EHR request to a set of relevant resources and automatically create infobutton requests 

for each of the selected e-resources. Importantly, IMs match contextual parameters to 

specific resources to ensure 1) optimal resources are offered to users, and 2) the order of 

returned links reflects the relevance of each resource in a particular context. As an 

example, an infobutton connecting to an IM within the context of computerized provider 

order entry (CPOE) and containing the term “clopidogrel” could return a link to the FDA 

approved label for clopidogrel, a link to the common conditions for which clopidogrel 

may be indicated, and a link to a genomic resource page on testing for clopidogrel 

resistance. Alternatively, if the infobutton were placed within a patient problem list, then 

the IM might reorder the links reflecting the difference between the contexts of 

medication ordering versus problem list review. For example, in the context of problem 

list review, the IM may return the link to the common conditions indicating clopidogrel 

as the first link, and might not return the link to the FDA label. 
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The HL7 IB standard is designed to reduce the effort required to integrate e-

resources with EHR systems. The standard contains a context information model, a 

standard set of terminologies to maximize interoperability with EHR systems, and 

RESTful web-based implementation approaches [90]. The context information model 

defines a set of context parameters according to four dimensions: the patient, the 

infobutton user, the care setting (e.g., inpatient, outpatient), and the task undertaken by 

the user within the EHR task (e.g., a medication order entry, a diagnosis, a laboratory test 

result). The patient dimension can include a main clinical concept of interest, patient’s 

age, gender, medications, and additional patient conditions/diagnoses. The user 

dimension allows the distinction between a healthcare provider and a patient user as well 

as the preferred language of the target information recipient. Importantly, the HL7 IB 

standard parameters aids semantic interoperability by providing coded data, and the 

terminology from which the code is derived. The example shows how a compliant 

request may appear (Table 4.1). The name of the parameter appears after an ampersand 

(‘&’) and the value after an equals sign (‘=’). The role of each component of the example 

is explained to the right. Object Identifiers (OIDs), are globally unique identifiers set by 

the International Organization for Standardization (ISO) and used by HL7 to identify 

organizations and code systems. Several HL7 IB compliant e-resources have taken 

advantage of the context within a HL7 IB compliant request to deliver specialized 

navigation pages that are tuned to support clinical decision making [88]. 

OpenInfobutton is an open source implementation of the HL7 IB standard, and is 

intended to streamline adoption of infobutton capabilities by healthcare organizations. To

date, several large healthcare organizations, including the Veterans Health 
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Table 4.1 HL7 IB example request implemented as a URL.  

Example of Infobutton Request Syntax Explanation of Component 

http://clingen.org/tools-resources/web-

resources/?searchType=HL7 

Base URL of knowledge resource 

&representedOrganization.id.root=1.3.6.1.4.1.3768 OID of requesting organization 

&patientPerson.administrativeGenderCode.c=F Patient gender (code) 

&age.v.v=67 Patient age (value) 

&age.v.u=a Patient age (units) 

&mainSearchCriteria.v.c=749196 Search term (code) 

&mainSearchCriteria.v.cs=2.16.840.1.113883.6.88 Search term (OID of code system) 

&mainSearchCriteria.v.dn=Clopidogrel Search term (display name) 

&performer=PROV Role of person performing request (code) 

&taskContext.c.c=MLREV Context of the EHR task (code) 

&informationRecipient=PROV Role of person consuming results (code) 

&knowledgeResponseType=application/json Defines syntax of response 

 

 

Administration [90], have deployed OpenInfobutton. Included in OpenInfobutton is a 

reference implementation of an IM, and several tools including the resource profile 

configuration tool known as LITE (Librarian Infobutton Tailoring Environment) [91]. 

Currently, configured resource profiles allow OpenInfobutton to provide EHRs access to 

over 40 e-resources. Resource profiles describe the context covered by the resource and, 

for resources not compliant with HL7, provide mappings to the resource proprietary 

search engine application program interface (API). Figure 4.1 describes the 

OpenInfobutton architecture and information flow.  

The full specification of the parameters available for clinical context can be found 
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Figure 4.1. OpenInfobutton architecture and information flow. (a) An HL7-compliant 

URL request that contains context parameters is sent from the EHR to OpenInfobutton. 

(b) Resource profiles are selected which match the EHR context, and (c) an infobutton 

response is produced with links to those resources. (d) OpenInfobutton responses can 

take the form of non-HL7 IB HTML and as HL7 IB XML/JSON. (e) Additionally, if a 

resource is HL7 IB compliant, OpenInfobutton can send the resource an HL7 IB request 

and (f) process HL7 IB responses. 

 

in the HL7 IB specification [22]. The parameters we focus on here are the main clinical 

concept of interest, clinical role, and the identifier for the organization making the 

request, called the organization id. These parameters are included in HL7 IB compliant 

URLs. 

 

4.4.2 Selection of Genomic Resources 

 

A list of resources was compiled by surveying attendees of a ClinGen educational 

session at the 2015 annual American College of Medical Geneticists meeting (ClinGen 

web-resources page: https://www.clinicalgenome.org/tools/web-resources/). The 

resources were organized by the ClinGen EHR WG based upon the role that the resource 

was expected to satisfy. For example, the patient tab has resources for patient education, 

but not resources that provide variant level details. In contrast, the clinician tab has 

resources such as The Pharmacogenomics Knowledgebase (PharmGKB), a clinician-
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facing pharmacogenomics resource. From the list, resources chosen for the patient and 

clinician role context were examined for integration using the HL7 IB. Special emphasis 

was placed on the NCBI resources as they actively maintain an extensive collection of 

genetic and genomic resources and are closely collaborating with ClinGen. 

 

4.4.3 OpenInfobutton Enabled Search Engine 

 

We created a search interface to explore providing genomic resource access to 

EHRs using the HL7 IB. Though the genomics resources themselves are not compliant 

with HL7 IB, OpenInfobutton resource profiles allow EHRs to access noncompliant 

resources through an HL7 IB request. OpenInfobutton accomplishes this through 

configuring custom API calls. 

 

4.4.4 OpenInfobutton Configuration for Genomic Resources 

 

OpenInfobutton resource profiles for genomic resources were configured to match 

the context of the organization making the request (ClinGen), the role of the information 

recipient (clinician or patient) and the terminology of the search concept. ClinGen was 

specified as the “requesting organization” given that OpenInfobutton requests are made 

through the ClinGen search interface. We found that this implementation choice would 

lower the barriers for EHRs to implement genomic infobutton searches. By only 

matching ClinGen as the requesting organization, rather than matching any organization, 

we provide a means to control when links to genomics content are returned by an 

OpenInfobutton request. This feature can be easily changed to accommodate EHR 

systems wishing to directly access the resource profiles. We configured Openinfobutton 

through the LITE application [91].  
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4.4.5 Genomics Resources and Readiness for HL7 IB Compliance 

 

According to the HL7 IB specification, compliant resources should provide a 

RESTful interface that can receive HL7 IB requests and provides HL7 IB responses. The 

request contains a syntax that presents search context using standard terminologies. 

Proper semantic understanding of the context requires support of the terminologies used 

by the request. Further, the HL7 IB specifies syntax for the resource response, including 

XML and JSON data types, and semantics according to the Atom standard 

(https://tools.ietf.org/html/rfc4287). We evaluated resource readiness based on the 

presence of a URL- based API, support for HTTP/HTTPS GET and POST protocols, 

support for standard terminologies, and support for response formats in XML and JSON. 

The evaluation was carried out by reading the web-accessible documentation for each 

resource as well as conducting test searches using the resource search API. The results 

were confirmed by contacting resource representatives.  

 

4.5 Results 

 

4.5.1 Genomic Resources Configured for Searching 

 

We selected eight genomic resources and two sub-resources for integration by the 

ClinGen OpenInfobutton search interface. The resource names and urls are found in 

Table 4.2.  

 

4.5.2 OpenInfobutton Enabled Search Engine 

The search user interface consists of a search bar with auto-complete functionality 

that is populated by a controlled list of relevant genomic terms and concepts (e.g., gene 

names, genetic conditions) from specific terminologies (Figure 4.2). 



44 
 

   

   

Table 4.2 Resources chosen for configuration.  

Resource name* Resource web-site 

1000 Genomes project http://browser.1000genomes.org/ 

Clinical Pharmacogenetics Implementation Consortium 

(CPIC) 

Accessed through PharmGKB and NCBI 

ClinVar http://www.ncbi.nlm.nih.gov/clinvar/ 

GeneReviews http://www.ncbi.nlm.nih.gov/books/NBK1116/ 

Genetic Practice Guidelines Accessed through MedGen 

Genetic Testing Registry (GTR) http://www.ncbi.nlm.nih.gov/gtr/ 

Genetics Home Reference (GHR) http://ghr.nlm.nih.gov 

MedGen http://www.ncbi.nlm.nih.gov/medgen/ 

Online Mendelian Inheritance in Man (OMIM) http://www.omim.org/ 

The Pharmacogenomics Knowledgebase (PharmGKB) https://www.pharmgkb.org/ 

*Genetic Practice Guidelines and CPIC guidelines are examples of specific content accessed as sub-resources of other 

resources, MedGen and PharmGKB respectively.      

 

 

Figure 4.2 A screenshot of the ClinGen EHR WG OpenInfobutton search interface. (a) 

As text is typed into the search bar, suggestions for autocompleting are provided from the 

controlled vocabulary. (b) After search initiation, context dependent links to resources are 

provided in a menu (c) with the first resource link displayed in a frame. (d) Tabs for 

clinician or patient provider are found above the search bar. 
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We used the terminology of the search term as an indicator of the genomic 

domain of inquiry. The three domains used are: Gene (HUGO Gene Symbol), Genetic 

Disorders/Conditions (OMIM), and Medication (RxNorm). HUGO Gene Symbols is an 

established international gene name terminology that is required by the HL7 Clinical 

Genomics Implementation Guide [92]. OMIM was chosen by the ClinGen steering 

committee to be used to represent genetic disorders within ClinGen, and it is accepted by 

HL7 as an optional terminology in the HL7 Clinical Genomics Implementation Guide 

[92]. Further, OMIM currently provides better coverage for rare and genetic diseases than 

ICD-9, ICD-10, and SNOMED-CT. We use RxNorm to represent drugs given that it is 

required for EHR certification in the Meaningful Use program [21]. Yet, the use of 

specific terminologies can be extended according to the HL7 IB specification and within 

OpenInfobutton’s architecture.  

The interaction between the search interface and Openinfobutton (Figure 4.3) begins 

when the ClinGen EHR search interface takes the role of an EHR system and prepares an 

infobutton request based on search input. The request is sent to OpenInfobutton, which 

responds using the HL7 Infobutton JSON format. The search interface parses the JSON 

response, presents the user with a list of indexed links from the matching resources, and 

loads the first resource into a frame within the ClinGen Web site. The order of the e-

resource links is based on the context of the terminology used for the search. For 

example, when an RxNorm (medication terminology) concept is used, it is inferred that a 

clinician has an interest in pharmacogenomics. PharmGKB is a pharmacogenomics 

specialized resource, thus links for PharmGKB content appear at the top of the list.  
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Figure 4.3. Data flow from the ClinGen search interface to OpenInfobutton. (a) When the 

search button is selected the ClinGen EHR resource page creates an HL7 Infobutton 

request that sends the context of the search to OpenInfobutton, similarly to an EHR 

generated infobutton request. The context includes the search term (i.e., main clinical 

concept of interest, selected from a controlled vocabulary through a drop-down list), the 

user’s role (clinician, laboratorian, researcher or patient) and the identifier for ClinGen, 

the organization making the request. (b) Next, the context is matched to the resource 

profiles within OpenInfobutton. (c) URLs from resources matching the context 

parameters are collated (d) and sent as a response to the ClinGen EHR Resource. As seen 

on the left side of the figure, the ClinGen resource page parses the OpenInfobutton 

response and displays the context sensitive links on a menu to the left of a frame 

containing the web-site of the first listed resource link.  

 

An important additional context we implemented was the “role” parameter which 

is set based on the tab selected by the user in the ClinGen EMR page. As an example, 

when the patient tab is selected in the ClinGen search interface, only GHR is returned for 

genetic disorder (OMIM) concepts. 

 

4.5.3 OpenInfobutton Configuration for Genomic Resources 

Most resources were configured through OpenInfobutton profiles to respond to 

the context of all three search term domains (Gene, Genetic Disorders/Conditions, and 

Medications). The exception is Gene Reviews, which is retrieved only when the search 

term is in the Gene domain. For search terms in the Gene and Medications domains, we 
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configured OpenInfobutton to use the text label associated with the search. We followed 

a similar strategy for the Genetic Disorder domain. However, for OMIM, we were able to 

use the OMIM code (called a MIM number) with some resources. At present, only GHR 

was configured to respond to the patient role. 

. 

4.5.4 Genomics Resources and Readiness for HL7 IB Compliance 

 

Table 4.3 describes the readiness of eight genomic resources for compliance with 

the HL7 IB specification, as of September 14th, 2015. Except for CPIC, all resources 

provide a URL-based API that supports the HTTP/HTTPS GET and POST protocols. 

CPIC guidelines were made retrievable as a subset of the links returned using the 

PharmGKB resource.  

Within PharmGKB, CPIC guidelines are directly accessible only using 

PharmGKB’s internal proprietary codes. But, in general, PharmGKB supports searches 

using a proprietary identifier for medications as well as free-text medication terms. 

Access to concepts defined by MIM numbers was well supported by the NCBI genomic 

resources (ClinVar, GeneReviews, Genetic Practice Guidelines, Genetic Testing 

Registry, MedGen), GHR, and OMIM itself. Not surprisingly, all resources supported the 

use of HUGO Gene Nomenclature Committee (HGNC) gene symbols, but not HGNC 

code-based searching. Additionally, OMIM supported retrieval of XML/JSON. Aside 

from direct URL access, the five NCBI resources can also be accessed through an 

application program interface (API) called e-utilities [30]. The tool-set provides 

programmatic access including a URL-based request for XML and JSON. Support for 

infobutton response using the XML and JSON data types is part of the HL7 IB RESTful  
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Table 4.3 Readiness of genomic resources for HL7 IB compliance.  

Resource Response Types 
Specific Terminologies used 

to index the content  

Code-based 

searching support 

for Specific 

Terminologies  

NCBI Resources: ClinVar, 

GeneReviews, Genetic 

Practice Guidelines, 

Genetic Testing Registry, 

MedGen  

HTML/Text 

XML/JSON (with 

e-utilities) 

OMIM, HGNC Approved 

Gene Symbol, UMLS, 

SNOMED-CT 

OMIM* 

GHR (National Library of 

Medicine) 
HTML 

OMIM, HGNC Approved 

Gene Symbol , UMLS, 

SNOMED-CT 

OMIM 

OMIM 

HTML/XML/JSON

/JSONP (with 

Key) 

OMIM, HGNC Approved 

Gene Symbol, UMLS, 

SNOMED-CT 

OMIM 

PharmGKB HTML 

OMIM, HGNC Approved 

Gene Symbol, UMLS, 

SNOMED-CT, NDFRT 

None 

CPIC guidelines None None N/A 

* While code-based searching with OMIM MIM numbers is supported by the www.ncbi.nlm.nih.gov 

resources, in some cases, we choose to use the search term itself to maximize coverage.  

 

specification [22]. 

 

4.5.5 Search Interface Go-live and Sample HL7 Infobutton Requests 

 

As of October 2015, the first iteration of the OpenInfobutton search interface was 

available to the public. And, integration with EHRs was enabled with support of HL7 IB 

requests by the search interface. Additionally, resources within ClinGen such as gene 

dosage and variant evidence annotations are included in the genomic search and HL7 

infobutton response. Supplement A contains examples HL7 IB requests for clinical 

http://www.ncbi.nlm.nih.gov/
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questions regarding Genes, Genetic disorders/conditions, and pharmacogenomics.  

 

4.6 Discussion 

 

We have successfully enabled infobutton access to eight genomic resources and 

two sub-resources through OpenInfobutton and the HL7 IB standard. This brings access 

to many EHR systems as compliance with the HL7 IB is required for EHR certification in 

the US Meaningful Use program. Any EHR system that is HL7 IB compliant can use 

OpenInfobutton to access the configured genomic resources via context-specific 

infobuttons located in EHR modules such as problem list, laboratory test results, 

medication prescriptions, and computerized provider order entry. A next step towards 

interoperability of genomic resources with EHR systems is for resources themselves to 

become HL7 IB compliant. HL7 compliance would bring additional benefits, such as the 

ability to tailor the search results according to the EHR clinical context, more precise 

information retrieval due to the use of standard terminologies, tuning of resource API 

results for use by clinicians at the point of care, and the ability to integrate directly with 

any EHR that is compliant with the HL7 IB standard.  

The use of OpenInfobutton has allowed us to configure access to several non-HL7 

IB compliant genomic resources by EHR systems. However, there are important caveats 

that resulted in suboptimal results with non-HL7 IB compliant resources. For example, 

OpenInfobutton access to non-HL7 IB compliant resources will return a URL for the 

resource even when the URL results in the resources “no results found” page. 

Furthermore, the resource search URLs used in the resource profiles required manual 

optimization. After consultation of resource provided documentation, we iteratively 

optimized the search configurations based on available filters. We chose resource URL 
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search configurations which maximized coverage of the terms and concepts used in the 

auto-complete functionality of our search interface, but potentially at the expense of 

precision. Since the IB standard requires EHR systems to send both codes and labels, 

resource search engines can use a combination of strategies in real time to optimize 

retrieval. This approach is used by several HL7-compliant resources, such as 

MedlinePlus and UpToDate. Finally, EHR integration for noncompliant resources is 

dependent on OpenInfobutton. 

 

4.6.1 General HL7 IB Compliance Considerations 

 

We found that many resources required additional work to facilitate HL7 

compliance. We therefore provide recommendations to facilitate scalable access to 

resources using the HL7 IB standard. In general, toward adopting the HL7 IB standard, 

genomics resources should consider supporting the following requirements in their search 

APIs: 

a. Support HTTP/HTTPs POST and GET. 

b. Support standard terminologies that are required for EHR certification, such 

as RxNorm and SNOMED-CT. 

c. Support the syntax of standard HL7 IB requests and use context parameters to 

tailor the search response. 

i. Example of a request: ‘http://clingen-resource.org/tools-resources/web-

resources/?searchType=HL7&representedOrganization.id.root=1.3.6.1.4.

1.3768&patientPerson.administrativeGenderCode.c=F&age.v.v=67&age

.v.u=a&taskContext.c.c=MLREV&mainSearchCriteria.v.c=749196&mai

nSearchCriteria.v.cs=2.16.840.1.113883.6.88&mainSearchCriteria.v.dn=
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Clopidogrel&performer=PROV&informationRecipient=PROV 

&knowledgeResponseType=application/json’. In the example, the base 

URL is ‘http://clingen-resource.org/tools-resources/web-

resources/?searchType=HL7’ and the text following the base URL 

contains the contextual parameters. Briefly, the contextual parameters of 

the example are: 

1. ‘representedOrganization.id.root’ is the requesting organization 

2. ‘patientPerson.administrativeGenderCode.c’ is the code for patient 

Gender 

3. ‘age.v.v’ and ‘age.v.u’ are the age value and units 

4. ‘taskContext.c.c’ has the code for the context of the Task 

5. ‘mainSearchCriteria.v.c’, ‘mainSearchCriteria.v.cs’ and 

‘mainSearchCriteria.v.dn’ contain the code of the search term, the 

code system of the search term, and a text-version of the search 

term. 

6. ‘performer’ contains a code indicating the role of the person 

performing the request  

7. ‘informationRecipient’ indicates the role of the person the 

information is intended to be used by. 

8. ‘knowledgeResponseType’ indicates the form the client system is 

expecting the resource response to be in. 

d. Support HL7 IB compliant response including both XML and JSON data 

types (see the HL7 IB standard specification for examples). 
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4.6.2 Recommendations for ClinVar, Gene Reviews, Genetic  

Practice Guidelines, Genetic Testing Registry,  

MedGen, and GHR 

 

We found that the NCBI resources have many of the foundational components 

required for HL7 IB compliance, including a URL accessible API that can handle 

HTTP/HTTPs GET and POST requests, and content indexed with standard terminologies 

that are required for EHR certification (SNOMED-CT and RxNorm). Although the NCBI 

APIs do not provide the ability to search using RxNorm and SNOMED-CT codes, NCBI 

can leverage its ability to search with UMLS codes to provide RxNorm and SNOMED-

CT code-based searches. One potential solution is to map incoming requests in RxNorm 

and SNOMED-CT to UMLS codes and use these codes for searching. Another 

recommendation regarding terminology support is to support searching with HUGO 

codes for genes as approved gene symbols change over time. 

As mentioned, the NCBI provides a tool called e-utilities for programmatic 

searches of its databases, with support for XML/JSON responses. E-utilities could be a 

starting point for an HL7 IB interface to NCBI sites (ClinVar, Gene Reviews, Genetic 

Practice Guidelines, Genetic Testing Registry, MedGen). 

Further, the domain www.ncbi.nlm.nih.gov offers many high-quality genomic 

resources with specialized content. We suggest that the domain consider enabling a single 

HL7 IB API for access across all the resources of the domain. The feasibility of this 

approach is evidenced by the success of our search interface. One request is sent to 

OpenInfobutton and links to multiple resources are returned, with additional higher level 

categorization possible using the HL7 IB response format. 

Finally, NCBI has the potential to extend accessibility to other e-resources. For 
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example, both the 1000 Genomes resource and the text of CPIC guidelines are currently 

accessible through NCBI. NCBI adoption of the HL7 IB standard would make, support 

HL7 IB context-aware responses from these resources possible. 

 

4.6.3 Recommendations for OMIM 

 

OMIM provides two APIs, one requiring an authentication key with the base URL 

http://www.omim.org/api , which has many of the same foundational components as the 

NCBI resources. The API accessed through http://www.omim.org/api could be a starting 

point for an HL7 IB interface. The HL7 IB interface should handle the HL7 IB syntax for 

responses and requests (as noted in the general considerations section). 

 

4.6.4 Recommendations for PharmGKB 

 

PharmGKB has implemented some of the foundational features towards HL7 IB 

compliance, especially a URL-based search mechanism. As a drug reference resource, the 

most important gap in PharmGKB towards HL7 compliance is support for RxNorm code-

based searching. PharmGKB already uses drug names for content indexing. These drug 

names could be used to automatically identify RxNorm codes via the RxNorm RESTful 

API provided by the National Library of Medicine[31]. PharmGKB informed the authors 

that it is extending an API to support JSON/XML data types and code-based searching 

with RxNorm. 

 

4.6.5 Limitations 

 

We did not test implementation of all the possible parameters of the HL7 IB 

standard and only looked at providing responses for Medications, Genetic 

Diseases/Conditions, and Gene queries. Secondly, we did not consider allelic or genetic 
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sequence-level-based searches. Accessing allele-specific or sequence-level information to 

offer clinical recommendations based on a patient’s specific genotype is a complex but 

highly important issue for EHR systems, not to mention a key goal of the ClinGen 

project. Efforts to access clinical assertions based on allelic data are frustrated by the 

absence of widely accepted standards for exchange or storage. As a result, we did not 

support sequence-level searches other than an attempt using free-text with the 1000 

Genomes resource. As a first step toward addressing this issue, the ClinGen Resource is 

working with key stakeholders to define a common data model to unambiguously 

describe genetic alleles at the sequence level. ClinGen is also working with NCBI to 

design and implement a system for assigning unique Allele Identifiers and for providing 

Registry Web Services (provided by the ClinGen data modeling working-group) that will 

facilitate linking of genetic test results to HL7 IB compliant resources. 

 

4.6.6 Future for ClinGen EHR OpenInfobutton Enabled Search 

Interface and ClinGen Genomics Resource Access 

 

The ClinGen EHR WG is pursuing a formal usability study to improve the user-

interface and content provided by the genomic search. Also, we are in discussion with the 

resources mentioned here to improve access to resource content. Additionally, efforts are 

underway in HL7 to improve guidance for use of infobuttons in genomic information 

retrieval. 

In the future, the OpenInfobutton-enabled search interface will be expanded to 

other genomic resources found within ClinGen, including individual sequence variant 

pathogenicity. As standards for representing structured genomic data in the EHR are 

developed, it will be possible to create links into ClinGen curated variant information 
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from the EHR based on an individual patient’s genotype. ClinGen is actively involved in 

efforts to establish such standards; the project contributes to the emerging HL7 Fast 

Healthcare Interoperability Resources FHIR standard for reporting genetic test results, as 

well as contributing Logical Observation Identifiers Names and Codes LOINC codes 

appropriate for representing genetic test results. 

Further, Geisinger has recently enabled HL7 Infobutton requests within its 

genomic testing reporting system using HL7 requests. 

 

4.7 Conclusions 

 

We have produced the functional architecture needed to perform context-based 

searching of genomics e-resources using an OpenInfobutton implementation of the HL7 

IB standard. OpenInfobutton successfully enabled access to genomic e-resources using 

HL7 IB standard requests and provided response messages that complied with the 

standard. This demonstrates that OpenInfobutton can reduce the barrier for genomic e-

resource providers to utilize the HL7 IB standard for integrating their content with EHR 

systems. The process of creating the interface also provided an opportunity to evaluate e-

resource readiness for HL7 IB standard compliance, and to create recommendations for 

paths to EHR accessibility and compliance. We found that the genomic resources have 

many foundational features needed for HL7 IB readiness. To become compliant, the 

resources generally need to adapt their existent interfaces to handle the syntax of an HL7 

IB request and return an HL7 IB compliant response. A major feature of handling HL7 

requests, that resources should adopt, is support of terminologies used in EHRs, including 

concept code-based searching. To accomplish this, the resources investigated can take 

advantage of their current usage of codes for other terminologies. Thus, the largest effort 
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will be to determine how the resources wish to use the context provided by EHR systems. 

Tailored, precise access to genomics information relevant to a specific patient’s context 

may soon be available at the touch of a button—a crucial function to enhance the value of 

the anticipated ClinGen resource. 

 

4.8 Clinical Relevance Statement 

 

This paper outlines how the Clinical Genomic Resource (ClinGen) made use of 

the widely adopted HL7 Infobutton Standard and OpenInfobutton to facilitate integration 

of genomic knowledge into EHRs. The use of the HL7 standard reduces the barrier for 

EHR systems to support clinical decision making in genomics by providing clinicians 

with access to precise, context-aware genomics knowledge. Also, guidance is given to aid 

online knowledge resources in adopting the standard to streamline access to their 

genomics content. 
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4.12 Supplement A. Examples of HL7 Infobutton Requests to 

ClinGen for Genomics Information 

 

The following are sample HL7 Infobutton requests to ClinGen for a genomics 

search. In order to implement HL7 IB requests within an institutions’ EHR system, the 

main-search criteria should be populated with a gene (HGNC symbol), genetic 

disorder/condition (OMIM MIM), or medication (RxNorm ID). The 

‘knoweldgeResponseType’ parameter can have values of application/json, text/xml or be 

excluded to request JSON, XML, or HTML responses respectively. 

 

4.13 Requests 

 

A) This request specifies a search for the gene symbol AGTR2 and a provider as both the 

information requestor and recipient. Note, we have chosen to enable the use of the 

HGNC gene symbol as the HGNC code as a pragmatic choice based on personal 

communication with EHR vendors and potential implementers.  

https://www.clinicalgenome.org/tools/web-

resources/?searchType=HL7&representedOrganization.id.root=1.3.6.1.4.1.5884&pati

entPerson.administrativeGenderCode.c=F&age.v.v=47&age.v.u=a&taskContext.c.c=

PROBLISTREV&mainSearchCriteria.v.c=AGTR2&mainSearchCriteria.v.cs=2.16.84

0.1.113883.6.281&mainSearchCriteria.v.dn=AGTR2&performer=PROV&informatio

nRecipient=PROV&knowledgeResponseType=application/json 

B) This request specifies a 47-year-old female patient and information on genetics related 

to Breast Cancer using the OMIM code for Breast Cancer. 

https://www.clinicalgenome.org/tools/web-

resources/?searchType=HL7%20&representedOrganization.id.root=1.3.6.1.4.1.5884
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%20&patientPerson.administrativeGenderCode.c=F%20&age.v.v=47%20&age.v.u=a

&taskContext.c.c=PROBLISTREV%20&mainSearchCriteria.v.c=114480%20&main

SearchCriteria.v.cs=2.16.840.1.113883.6.174%20&mainSearchCriteria.v.dn=BREAS

T%20CANCER%20&performer=PROV%20&informationRecipient=PROV%20&kn

owledgeResponseType=text/xml 

C) This request specifies a search for pharmacogenomics information based on the 

RxNorm code for a 20MG dose of Plavix (clopidogrel), for a 47-year-old female 

patient. 

https://www.clinicalgenome.org/tools/web-

resources/?searchType=HL7&representedOrganization.id.root=1.3.6.1.4.1.5884&pati

entPerson.administrativeGenderCode.c=F&age.v.v=47&age.v.u=a&taskContext.c.c=

MLREV&mainSearchCriteria.v.c=573094&mainSearchCriteria.v.cs=2.16.840.1.113

883.6.88&mainSearchCriteria.v.dn=clopidogrel%2075%20MG%20[Plavix]&perfor

mer=PROV&knowledgeResponseType=application/json 

 

 



 
 

   

   

 
CHAPTER 5 

 

CONCLUSION 

 

This work addressed the problem of physicians’ perceived lack of knowledge in 

genomics by deepening understanding of physicians’ information seeking behavior in 

pharmacogenomics and producing a genomics search interface that provides HL7 

Infobutton access to genomics resources through use of Openinfobutton. Together, our 

studies provided the foundation for future work to meet clinicians’ perceived lack of 

knowledge in genomics.  

Effective use of pharmacogenomics testing can avoid complications of adverse 

drug events, improve care, reduce financial costs [25–30], and improve patient adherence 

[31,32]. However, most physicians, including those in our study, do not feel confident in 

their knowledge of pharmacogenomics. A lack of confidence and understanding can be 

addressed by successfully meeting information needs [36,93,94]. But, searching for 

information is quite challenging, as evidenced in our study. We found that physicians 

searched for information for an average of 8 minutes, far exceeding the 2 minutes 

expected to be spent at the point of care to purse questions [42]. Thus, similarly to 

guidelines in general [40], effective use of pharmacogenomics is impacted by awareness  

of recommendations, lack of self-efficacy, lack of pharmacogenomics knowledge, and a 

lack of time.  
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The themes uncovered in our study provide a foundation for what information 

should be delivered to aid effective use of genetic testing, and how it should be delivered. 

Important themes we uncovered included a need for concise information on each test for 

the cost (both hospital and patient), test turn-around time, insurance coverage, and 

accessibility to an expert (i.e., domain experts or colleagues who have used the test 

frequently). Also, we saw that clinicians wanted to know about the existence of 

alternative therapies that do not require genetic testing. In particular, the feature of 

financial cost is an addressable need. While hospital systems maybe unable to provide 

specific costs, a ball-park estimate such as comparison to the cost of a MRI could meet 

this need. Additionally, providing an indication of the presence of a local expert, either an 

experienced colleague or a trained specialist, is an indication of the level of support the 

physician can expect when making a decision. Interestingly, we saw that physicians were 

likely to navigate back to case vignette during their information search. This suggests that 

clinicians also need to consume new information juxtaposed to patient information. 

Additionally, rather than refining search terms, subjects preferred navigational 

strategies such as hyperlinks. Thus, information resources could improve navigation 

support such as through the provision of meaningful content headings and hyperlink 

labels. The theory of information foraging, which premises that humans are 

“informavores” seeking rich information patches [95], suggests that content headings and 

labels with strong “information scent” are key to attracting users to the correct content.  

Finally, our study results were consistent with the model of information behavior 

called berry-picking [74]. The majority of subjects chooses one search query and then 

proceeded to navigate from information patch to information patch, sampling information 
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in 30-second bites. The berry-picking strategy could be facilitated by guiding a user 

through the information gathering process by providing basic pharmacogenomics 

information, followed by an indication of the level of clinical importance of the 

pharamacogenomic effect and applicability to particular patient population, then evidence 

of the utility of available tests (sensitivity/specificity), prior to providing logistical details 

(such as time to test result, cost, access to expertise, insurance coverage). Thus, meeting 

physicians needs maybe best done with a modality that provides topical hyperlinks that 

ink to specific 30-second information bytes, merged with pertinent patient information. 

To deliver content to meet clinical information needs, the HL7 Infobutton 

Standard offers a useful solution. Our genomics search interface is a successful first step 

towards having the infrastructure to meet physicians’ genomics information needs, 

including pharmacogenomics. Adoption of the standard can decrease the barrier to 

providing genomics at the point of care. When resources use the contextual parameters of 

the information response, they have an opportunity to minimize the time it takes to 

answer information needs. However, most of the genomic resources are in the early 

stages of adoption. Also, Electronic Healthcare systems (EHRs) while adopting the HL7 

IB standard are not yet generally utilizing genomic nomenclatures, terminologies, or 

ontologies. This hinders the effective delivery of content to resources. As genomic 

resources begin to fully utilize the HL7 IB standard, and EHRs adopt genomic 

terminologies, there is an expectation that the information needs of physicians in 

genomics will be met.  

While we focused on physicians, future investigations should extend the study of 

pharmacogenomics information needs and information-seeking to additional 
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stakeholders, and incorporate tactics within a genomics infobutton response to meet those 

needs. For example, there is a trend of increasing interest in direct-to-consumer genetic 

testing [96–98]. The authors of one study cite evidence that people who search the 

internet “increasingly” want their genomic data and concluded that patients themselves 

will be more likely to be faced with understanding genomics results [99]. Thus patients’ 

pharmacogenomics information needs may become more prominent. Further, there is also 

discussion of moving pharmacogenomics decisions fully into the purview of pharmacists 

[100]. A future study should include these two important groups, patients and 

pharmacists, and determine tactics to meet their needs.  

In conclusion, pharmacogenomics is an area where improved access to 

information may reduce physicians sense of low self-efficacy and thus improve the 

effective use of pharmacogenomics testing. The HL7 Infobutton modality can be used not 

only to meet pharmacogenomics information needs but also general genomics 

information needs. As a step towards meeting general information needs in genomics, the 

work of this thesis has enabled context-aware retrieval of actionable, curated evidence on 

the gene and disease level from genomics information resources, including ClinGen, by 

Electronic Healthcare systems. Coupling this information with patient information and 

logistics information, such as cost, test-turnaround time, and accessibility of an expert, 

will provide a tool that meets the information needs we uncovered. A next step is to learn 

if such a tool actually improves both physicians’ level of comfort with genomics and 

patient outcomes.
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