716 research outputs found

    Cultural probes and the value of uncertainty

    Get PDF
    When reason is away, smiles will play. --- Paul Eluard and Benjamin Pére

    Age-related mitochondrial DNA depletion and the impact on pancreatic beta cell function

    Get PDF
    Type 2 diabetes is characterised by an age-related decline in insulin secretion. We previously identified a 50% age-related decline in mitochondrial DNA (mtDNA) copy number in isolated human islets. The purpose of this study was to mimic this degree of mtDNA depletion in MIN6 cells to determine whether there is a direct impact on insulin secretion. Transcriptional silencing of mitochondrial transcription factor A, TFAM, decreased mtDNA levels by 40% in MIN6 cells. This level of mtDNA depletion significantly decreased mtDNA gene transcription and translation, resulting in reduced mitochondrial respiratory capacity and ATP production. Glucose-stimulated insulin secretion was impaired following partial mtDNA depletion, but was normalised following treatment with glibenclamide. This confirms that the deficit in the insulin secretory pathway precedes K+ channel closure, indicating that the impact of mtDNA depletion is at the level of mitochondrial respiration. In conclusion, partial mtDNA depletion to a degree comparable to that seen in aged human islets impaired mitochondrial function and directly decreased insulin secretion. Using our model of partial mtDNA depletion following targeted gene silencing of TFAM, we have managed to mimic the degree of mtDNA depletion observed in aged human islets, and have shown how this correlates with impaired insulin secretion. We therefore predict that the age-related mtDNA depletion in human islets is not simply a biomarker of the aging process, but will contribute to the age-related risk of type 2 diabetes

    Forest Composition Change and Biophysical Climate Feedbacks Across Boreal North America

    Get PDF
    Deciduous tree cover is expected to increase in North American boreal forests with climate warming and wildfire. This shift in composition has the potential to generate biophysical cooling via increased land surface albedo. Here we use Landsat-derived maps of continuous tree canopy cover and deciduous fractional composition to assess albedo change over recent decades. We find, on average, a small net decrease in deciduous fraction from 2000 to 2015 across boreal North America and from 1992 to 2015 across Canada, despite extensive fire disturbance that locally increased deciduous vegetation. We further find near-neutral net biophysical change in radiative forcing associated with albedo when aggregated across the domain. Thus, while there have been widespread changes in forest composition over the past several decades, the net changes in composition and associated post-fire radiative forcing have not induced systematic negative feedbacks to climate warming over the spatial and temporal scope of our study

    Impacts of Climate and Insect Herbivory on Productivity and Physiology of Trembling Aspen (Populus tremuloides) in Alaskan Boreal Forests

    Get PDF
    Climate change is impacting forested ecosystems worldwide, particularly in the Northern Hemisphere where warming has increased at a faster rate than the rest of the globe. As climate warms, trembling aspen (Populus tremuloides) is expected to become more successful in northern boreal forests because of its current presence in drier areas of North America. However, large-scale productivity decline of aspen has recently been documented throughout the United States and Canada as a result of drought and insect outbreaks. We used tree ring measurements (basal area increment (BAI) and stable carbon isotopes (δ 13C)) and remote sensing indices of vegetation productivity (NDVI) to study the impact of climate and damage by the aspen epidermal leaf miner (Phyllocnistis populiella) on aspen productivity and physiology in interior Alaska. We found that productivity decreased with greater leaf mining and was not sensitive to growing season (GS) moisture availability. Although productivity decreased during high leaf mining years, it recovered to pre-outbreak levels during years of low insect damage, suggesting a degree of resilience to P. populiella mining. Climate and leaf mining interacted to influence tree ring δ 13C, with greater leaf mining resulting in decreased δ 13C when GS moisture availability was low. We also found that NDVI was negatively associated with leaf mining, and positively correlated with BAI and the δ 13C decrease corresponding to mining. This suggests that NDVI is capturing not only variations in productivity, but also changes in physiology associated with P. populiella. Overall, these findings indicate that the indirect effects of P. populiella mining have a larger impact on aspen productivity and physiology than climate under current conditions, and is essential to consider when assessing growth, physiology and NDVI trends in interior Alaska

    Bottom-up drivers of future fire regimes in western boreal North America

    Get PDF
    Forest characteristics, structure, and dynamics within the North American boreal region are heavily influenced by wildfire intensity, severity, and frequency. Increasing temperatures are likely to result in drier conditions and longer fire seasons, potentially leading to more intense and frequent fires. However, an increase in deciduous forest cover is also predicted across the region, potentially decreasing flammability. In this study, we use an individual tree-based forest model to test bottom-up (i.e. fuels) vs top-down (i.e. climate) controls on fire activity and project future forest and wildfire dynamics. The University of Virginia Forest Model Enhanced is an individual tree-based forest model that has been successfully updated and validated within the North American boreal zone. We updated the model to better characterize fire ignition and behavior in relation to litter and fire weather conditions, allowing for further interactions between vegetation, soils, fire, and climate. Model output following updates showed good agreement with combustion observations at individual sites within boreal Alaska and western Canada. We then applied the updated model at sites within interior Alaska and the Northwest Territories to simulate wildfire and forest response to climate change under moderate (RCP 4.5) and extreme (RCP 8.5) scenarios. Results suggest that changing climate will act to decrease biomass and increase deciduous fraction in many regions of boreal North America. These changes are accompanied by decreases in fire probability and average fire intensity, despite fuel drying, indicating a negative feedback of fuel loading on wildfire. These simulations demonstrate the importance of dynamic fuels and dynamic vegetation in predicting future forest and wildfire conditions. The vegetation and wildfire changes predicted here have implications for large-scale changes in vegetation composition, biomass, and wildfire severity across boreal North America, potentially resulting in further feedbacks to regional and even global climate and carbon cycling

    Bottom-Up Drivers of Future Fire Regimes in Western Boreal North America

    Get PDF
    Forest characteristics, structure, and dynamics within the North American boreal region are heavily influenced by wildfire intensity, severity, and frequency. Increasing temperatures are likely to result in drier conditions and longer fire seasons, potentially leading to more intense and frequent fires. However, an increase in deciduous forest cover is also predicted across the region, potentially decreasing flammability. In this study, we use an individual tree-based forest model to test bottom-up (i.e. fuels) vs top-down (i.e. climate) controls on fire activity and project future forest and wildfire dynamics. The University of Virginia Forest Model Enhanced is an individual tree-based forest model that has been successfully updated and validated within the North American boreal zone. We updated the model to better characterize fire ignition and behavior in relation to litter and fire weather conditions, allowing for further interactions between vegetation, soils, fire, and climate. Model output following updates showed good agreement with combustion observations at individual sites within boreal Alaska and western Canada. We then applied the updated model at sites within interior Alaska and the Northwest Territories to simulate wildfire and forest response to climate change under moderate (RCP 4.5) and extreme (RCP 8.5) scenarios. Results suggest that changing climate will act to decrease biomass and increase deciduous fraction in many regions of boreal North America. These changes are accompanied by decreases in fire probability and average fire intensity, despite fuel drying, indicating a negative feedback of fuel loading on wildfire. These simulations demonstrate the importance of dynamic fuels and dynamic vegetation in predicting future forest and wildfire conditions. The vegetation and wildfire changes predicted here have implications for large-scale changes in vegetation composition, biomass, and wildfire severity across boreal North America, potentially resulting in further feedbacks to regional and even global climate and carbon cycling

    Identification of dfrA14 in two distinct plasmids conferring trimethoprim resistance in Actinobacillus pleuropneumoniae

    Get PDF
    OBJECTIVES: The objective of this study was to determine the distribution and genetic basis of trimethoprim resistance in Actinobacillus pleuropneumoniae isolates from pigs in England. METHODS: Clinical isolates collected between 1998 and 2011 were tested for resistance to trimethoprim and sulphonamide. The genetic basis of trimethoprim resistance was determined by shotgun WGS analysis and the subsequent isolation and sequencing of plasmids. RESULTS: A total of 16 (out of 106) A. pleuropneumoniae isolates were resistant to both trimethoprim (MIC >32 mg/L) and sulfisoxazole (MIC ≥256 mg/L), and a further 32 were resistant only to sulfisoxazole (MIC ≥256 mg/L). Genome sequence data for the trimethoprim-resistant isolates revealed the presence of the dfrA14 dihydrofolate reductase gene. The distribution of plasmid sequences in multiple contigs suggested the presence of two distinct dfrA14-containing plasmids in different isolates, which was confirmed by plasmid isolation and sequencing. Both plasmids encoded mobilization genes, the sulphonamide resistance gene sul2, as well as dfrA14 inserted into strA, a streptomycin-resistance-associated gene, although the gene order differed between the two plasmids. One of the plasmids further encoded the strB streptomycin-resistance-associated gene. CONCLUSIONS: This is the first description of mobilizable plasmids conferring trimethoprim resistance in A. pleuropneumoniae and, to our knowledge, the first report of dfrA14 in any member of the Pasteurellaceae. The identification of dfrA14 conferring trimethoprim resistance in A. pleuropneumoniae isolates will facilitate PCR screens for resistance to this important antimicrobial

    Patterns of Ecosystem Structure and Wildfire Carbon Combustion Across Six Ecoregions of the North American Boreal Forest

    Get PDF
    Increases in fire frequency, extent, and severity are expected to strongly impact the structure and function of boreal forest ecosystems. An important function of the boreal forest is its ability to sequester and store carbon (C). Increasing disturbance from wildfires, emitting large amounts of C to the atmosphere, may create a positive feedback to climate warming. Variation in ecosystem structure and function throughout the boreal forest is important for predicting the effects of climate warming and changing fire regimes on C dynamics. In this study, we compiled data on soil characteristics, stand structure, pre-fire C pools, C loss from fire, and the potential drivers of these C metrics from 527 sites distributed across six ecoregions of North America’s western boreal forests. We assessed structural and functional differences between these fire-prone ecoregions using data from 417 recently burned sites (2004–2015) and estimated ecoregion-specific relationships between soil characteristics and depth from 167 of these sites plus an additional 110 sites (27 burned, 83 unburned). We found that northern boreal ecoregions were generally older, stored and emitted proportionally more belowground than aboveground C, and exhibited lower rates of C accumulation over time than southern ecoregions. We present ecoregion-specific estimates of depth-wise soil characteristics that are important for predicting C combustion from fire. As climate continues to warm and disturbance from wildfires increases, the C dynamics of these fire-prone ecoregions are likely to change with significant implications for the global C cycle and its feedbacks to climate change

    Justice and conservation: The need to incorporate recognition

    Get PDF
    In light of the Aichi target to manage protected areas equitably by 2020, we ask how the conservation sector should define justice. We focus in particular on ‘recognition’, because it is the least well understood aspect of environmental justice, and yet highly relevant to conservation because of its concern with respect for local knowledge and cultures. In order to explore the meaning of recognition in the conservation context, we take four main steps. First, we identify four components of recognition to serve as our analytical framework: subjects of justice, the harms that constitute injustice, the mechanisms that produce injustices, and the responses to alleviate these. Secondly, we apply this framework to explore four traditions of thinking about recognition: Hegelian inter-subjectivity, critical theory, southern decolonial theory, and the capabilities approach. Thirdly, we provide three case studies of conservation conflicts highlighting how different theoretical perspectives are illustrated in the claims and practices of real world conservation struggles. Fourthly, we finish the paper by drawing out some key differences between traditions of thinking, but also important areas of convergence. The convergences provide a basis for concluding that conservation should look beyond a distributive model of justice to incorporate concerns for social recognition, including careful attention to ways to pursue equality of status for local conservation stakeholders. This will require reflection on working practices and looking at forms of intercultural engagement that, for example, respect alternative ways of relating to nature and biodiversity

    Acceptability and feasibility pilot randomised controlled trial of medical skin camouflage for recovery of women prisoners with self-harm scarring (COVER): the study protocol

    Get PDF
    Self-harm in prison is a major public health concern. Less than 5% of UK prisoners are women, but they carry out more than a fifth of prison self-harm. Scars resulting from self-harm can be traumatising and stigmatising, yet there has been little focus on recovery of women prisoners with self-harm scarring. Medical skin camouflage (MSC) clinics treat individuals with disfiguring skin conditions, with evidence of improved well-being, self-esteem and social interactions. Only one community study has piloted the use of MSC for self-harm scarring. We describe an acceptability and feasibility pilot randomised controlled trial; the first to examine MSC for women prisoners who self-harm. We aim to randomise 20-25 women prisoners to a 6-week MSC intervention and 20-25 to a waitlist control (to receive the MSC after the study period). We aim to train at least 6-10 long-term prisoners with personal experience of self-harm to deliver the intervention. Before and after intervention, we will pilot collection of women-centred outcomes, including quality of life, well-being and self-esteem. We will pilot collection of self-harm incidents during the intervention, resources used to manage/treat self-harm and follow-up of women at 12 weeks from baseline. Data on recruitment, retention and dropout will be recorded. We aim for the acceptability of the intervention to prison staff and women prisoners to be explored in qualitative interviews and focus groups. Ethical approval for COVER has been granted by the North East-York Research Ethics Committee (REC) for phases 1 and 2 (reference: 16/NE/0030) and West of Scotland REC 3 for phases 3 and 4 (reference: 16/WS/0155). Informed consent will be the primary consideration; it will be made clear that participation will have no effect on life in prison or eligibility for parole. Due to the nature of the study, disclosures of serious self-harm may need to be reported to prison officials. We aim for findings to be disseminated via events at the study prison, presentations at national/international conferences, journal publications, prison governor meetings and university/National Health Service trust communications. NCT02638974; Pre-results. [Abstract copyright: © Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY. Published by BMJ.
    • …
    corecore