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Objectives: The objective of this study was to determine the distribution and genetic basis of trimethoprim resist-
ance in Actinobacillus pleuropneumoniae isolates from pigs in England.

Methods: Clinical isolates collected between 1998 and 2011 were tested for resistance to trimethoprim and
sulphonamide. The genetic basis of trimethoprim resistance was determined by shotgun WGS analysis and
the subsequent isolation and sequencing of plasmids.

Results: A total of 16 (out of 106) A. pleuropneumoniae isolates were resistant to both trimethoprim (MIC .32 mg/L)
and sulfisoxazole (MIC ≥256 mg/L), and a further 32 were resistant only to sulfisoxazole (MIC ≥256 mg/L). Genome
sequence data for the trimethoprim-resistant isolates revealed the presence of the dfrA14 dihydrofolate reductase
gene. The distribution of plasmid sequences in multiple contigs suggested the presence of two distinct dfrA14-con-
taining plasmids in different isolates, which was confirmed by plasmid isolation and sequencing. Both plasmids
encoded mobilization genes, the sulphonamide resistance gene sul2, as well as dfrA14 inserted into strA, a strepto-
mycin-resistance-associated gene, although the gene order differed between the two plasmids. One of the plasmids
further encoded the strB streptomycin-resistance-associated gene.

Conclusions: This is the first description of mobilizable plasmids conferring trimethoprim resistance in
A. pleuropneumoniae and, to our knowledge, the first report of dfrA14 in any member of the Pasteurellaceae. The
identification of dfrA14 conferring trimethoprim resistance in A. pleuropneumoniae isolates will facilitate PCR screens
for resistance to this important antimicrobial.
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Introduction

Actinobacillus pleuropneumoniae causes porcine pleuropneumo-
nia, an economically important endemic disease that can be
difficult to control.1 Good husbandry practices and vaccination

can help to reduce the incidence of acute disease, and the early
use of effective antimicrobials is essential to limit its spread and
severity. A knowledge of the antimicrobial susceptibility patterns
of A. pleuropneumoniae is important so that informed treatment
decisions can be made.
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In the UK, the most commonly used antimicrobials for the
treatment of food animals (86% of which are used for pigs and
poultry) are tetracyclines, b-lactams and trimethoprim/sulphona-
mides.2 Sulphonamides have been widely used since the 1930s
for the treatment of both human and veterinary diseases.3,4

Trimethoprim, introduced in the 1960s, is often coadministered
with sulphonamides.3

Resistance to both trimethoprim and sulphonamides can be
mediated either by mutations in the chromosomally encoded
target enzymes (dihydropteroate synthase and dihydrofolate
reductase, respectively) or by the acquisition of transferable
genes encoding alternative drug-insensitive enzymes.3,4 There
are three known genes encoding alternative dihydropteroate
synthases (sul1, sul2 and sul3)5 and .30 dfr genes encoding
trimethoprim-insensitive dihydrofolate reductases.6

Sulphonamide resistance conferred by sul2, carried on small
plasmids, has been reported for A. pleuropneumoniae7 – 9 and
other Pasteurellaceae.10 However, little is known regarding the
genetic basis of trimethoprim resistance in the Pasteurellaceae.
Single bovine and porcine isolates of Pasteurella multocida11

and Pasteurella aerogenes12 have harboured plasmids carrying
dfrA20 and dfrA1, respectively, whereas trimethoprim-resistant
Haemophilus influenzae has been shown to have mutations in
the chromosomally encoded dihydrofolate reductase.13

In this study, we have identified the genetic basis of trimetho-
prim resistance in A. pleuropneumoniae using WGS followed by
plasmid isolation and confirmatory sequencing. Two distinct plas-
mids carrying dfrA14 were found, the first known description of
this gene in the Pasteurellaceae.

Materials and methods

Bacterial strains and antimicrobial resistance testing
A total of 106 clinical isolates of A. pleuropneumoniae, cultured from the
pneumonic lungs of pigs submitted for diagnostic investigation to the then
Animal Health and Veterinary Laboratory Agency (now Animal and Plant
Health Agency) diagnostic laboratories in England between 1998
and 2011, were selected for study. The majority of isolates were from
2005–10 (20, 26, 11, 12, 14 and 8 isolates, respectively), with none from
2000–01 and only 1–4 from each of the other years. Serovars 2 (11%),
6 (6.5%), 7 (8.5%), 8 (72.0%) and 12 (2.0%) were represented, reflecting
the serovar distribution in the UK.14 A. pleuropneumoniae MIDG2331 is a
plasmid-free serovar 8 clinical isolate that was cultured from pneumonic
pig lungs in 1995. MIDG2331 was made NAD-independent by the chromo-
somal insertion (replacing part of ureC) of the Haemophilus ducreyi nadV
gene, yielding MIDG2331DureC::nadV.15 All the strains were grown at
378C with 5% CO2 on brain heart infusion (BHI; Difco) agar supplemented
with 0.01% NAD and, when required, with trimethoprim (10 mg/L).

For all isolates, MICs were determined for trimethoprim and sulfisoxa-
zole by agar dilution susceptibility testing, according to the CLSI M31-A3
guidance.16

Genome sequencing and analysis
Genomic DNA was extracted from the 16 trimethoprim-resistant (MIC
.32 mg/L) A. pleuropneumoniae isolates (Table 1) using the FastDNA
Spin Kit (MP Biomedicals), according to the manufacturer’s protocol for
bacterial cells, and 0.5 mg was used for library preparation and sequencing
as previously described.17

ResFinder (www.genomicepidemiology.org) was used to identify
acquired antimicrobial resistance genes (using a threshold of 98% identity)

in the draft genomes. Contigs identified by ResFinder (Table 1) have been
submitted to GenBank (accession numbers: contig006_MIDG2356¼
KP196974; contig026_MIDG2657¼KP196975; contig031_MIDG2657¼
KP196976; contig055_MIDG2664¼KP196977; contig065_MIDG2664¼
KP196978; contig010_MIDG3201¼KP196979; contig028_MIDG3201¼
KP196980; contig020_MIDG3221¼KP196981; contig054_MIDG3221¼
KP196982; contig049_MIDG3224¼KP196983; contig012_MIDG3232¼
KP196984; contig020_MIDG3232¼KP196985; contig048_MIDG3346¼
KP196986; contig057_MIDG3346¼KP196987; contig047_MIDG3349¼
KP196988; contig060_MIDG3349¼KP196989; contig106_MIDG3370¼
KP196990; contig050_MIDG3371¼KP196991; contig095_MIDG3371¼
KP196992; contig045_MIDG3372¼KP196993; contig102_MIDG3372¼
KP196994; contig015_MIDG3378¼KP196995; contig056_MIDG3378¼
KP196996; contig006_MIDG3388¼KP196997; contig022_MIDG3388¼
KP196998; contig016_MIDG3389¼KP196999; contig030_MIDG3389¼
KP197000; contig005_MIDG3395¼KP197001; contig026_MIDG3395¼
KP197002; and contig074_MIDG3395¼KP197003).

Isolation and characterization of plasmids
Plasmids were extracted from A. pleuropneumoniae isolates MIDG3224
and MIDG3389, selected as representing two different patterns of resist-
ance genes identified by ResFinder (Table 1), using the QIAprep Spin
Miniprep kit (Qiagen). Attempts were made to transform plasmids into
Escherichia coli Stellar cells (Clontech) by heat shock, with selection on
LB agar containing trimethoprim (10 or 20 mg/L). The conjugal transfer
of plasmids from MIDG3224 and MIDG3389 into MIDG2331DureC::nadV
was carried out as previously described,18 with transconjugants selected
on BHI agar (without NAD) supplemented with 10 mg/L trimethoprim.

The MICs of trimethoprim and sulfisoxazole were determined for
selected trimethoprim-resistant transconjugants, as described above, and
the presence of dfrA14, sul2 and nadV was determined by QiagenFast PCR
(Qiagen) using primer pairs dfrA14_for (CATTGATAGCTGCGAAAGCGAAA
AACGGC)/dfrA14_rev (ATCGTCGATAAGTGGAGCGTAGAGGC), sul2_for (TCAAC
ATAACCTCGGACAGTTTCTC)/sul2_rev (GGGAATGCCATCTGCCTTGAGC) and
nadV_for (CTAGTAACCGAGCCCGCCTAATGAG)/nadV_rev (GGCGGCCGCACT
AGTGATTACAAG).

The complete sequences of plasmids pM3389T and pM3224T, isolated
from transconjugants, were determined using a primer walking strategy
(GenBank accession numbers pM3224T¼KP197004 and pM3389T¼
KP197005). These sequences were subsequently used to search the draft
genomes of the remaining trimethoprim-resistant isolates using BLASTn.

Results and discussion
Trimethoprim resistance (MIC .32 mg/L) was detected in 16 out of
106 A. pleuropneumoniae isolates, and all 16 were resistant to
sulfisoxazole (MIC ≥256 mg/L) (Table 1). A further 32 isolates
were resistant to sulfisoxazole only (data not shown), which is not
surprising given that trimethoprim, often coadministered with sul-
phonamides, was introduced for use 30 years after sulphonamides.
Co-resistance to trimethoprim and sulfisoxazole was found in sero-
var 7 and 8 isolates obtained from four different geographical loca-
tions in England as early as 1998 (1 out of 3 isolates), with the
largest proportion identified in 2009 (6 out of 14 isolates).

ResFinder analysis (Table 1) of the draft genomes identified the
trimethoprim resistance gene dfrA14 on contigs ranging from 636
to 3451 bp in all trimethoprim-resistant isolates. In all but two
isolates (MIDG2664 and MIDG3349) a partial strA gene was iden-
tified on the same contig as dfrA14, and in two isolates
(MIDG2356 and MIDG3224) sul2 and strB were also found on
the same contig as dfrA14. The sul2 gene was identified on
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separate small contigs (768–963 bp) in all other isolates. BLASTx
analysis of the dfrA14-containing contigs of MIDG2664 and
MIDG3349 revealed partial strA sequences flanking the dfrA14
gene in both cases. Furthermore, alignments of the dfrA14-
containing contigs showed that the strA5′-dfrA14-strA3′ sequences
were identical in all 16 isolates, although the shorter contigs in
MIDG2664 and MIDG3349 were missing the first 205/529 bp of
the strA5′ sequence, which was not detected by ResFinder.
Alignments of the dfrA14-containing contigs also suggested
two different trimethoprim resistance plasmids: contigs from
MIDG2356 and MIDG3224 were identical over the 3429 bp com-
mon to both, and contigs from the remaining isolates showed
100% identity where alignment was possible, given the different
lengths of the contigs.

The distribution of sequences among the small contigs sug-
gested the possibility of multiple plasmids sharing common
sequences. No known plasmids were detected in the draft gen-
omes using PlasmidFinder (www.genomicepidemiology.org), but
an analysis of the endogenous plasmid profiles for MIDG3224
and MIDG3389 suggested multiple plasmids, at least in the latter
(Figure 1a). Conjugal transfer from MIDG3224 and MIDG3389 into
a plasmid-free recipient strain (MIDG2331DureC::nadV) was used
to isolate trimethoprim resistance plasmids pM3224T and
pM3389T prior to complete nucleotide sequencing (Figure 1a).
Trimethoprim-resistant transconjugants were positive for dfrA14
and nadV by PCR, indicating the successful mobilization of plas-
mids from MIDG3224 and MIDG3389 into MIDG2331DureC::
nadV (Figure 1b). Furthermore, the amplification of sul2 sequences
from transconjugants suggested that both pM3224T and
pM3389T also encode sulphonamide resistance (Figure 1b), and
the MICs of trimethoprim and sulfisoxazole were the same for

the transconjugants as for the donor strains. A primer walking
strategy was used to determine the complete nucleotide
sequences of pM3224T and pM3389T as representatives of the
two different trimethoprim resistance plasmids indicated above.

Plasmid pM3224T (6050 bp) was found to share the greatest
similarity (99% identity with 81% coverage) with pB1003 (acces-
sion no. EU360945) isolated from P. multocida from pigs in Spain19

(Figure 1c). These two plasmids have identical mobilization genes
(306 bp mobC, 972 bp mobA and 261 bp mobB located in the
3′ end of mobA) that belong to the HEN family of relaxases com-
mon in mobilizable plasmids in the Pasteurellaceae.19,20 In
pB1003, a complete (804 bp) strA and partial (294 bp) strB gene
are found downstream of sul2, and a similar gene linkage has
been reported in other Pasteurellaceae plasmids.10,21 In
pM3224T, however, there is a 711 bp strB gene, and the strA
gene is disrupted by the insertion of a 568 bp element carrying
dfrA14, a gene arrangement that has previously been reported
in plasmids pCERC1 (accession no. NC_019070; Figure 1c) and
pSTOJO (accession no. NG_035503) from Enterobacteriaceae iso-
lated from humans,22,23 pYR1521 (accession no. NG_041026)
from Yersinia ruckeri isolated from fish24 and pRSB206 (accession
no. NC_025062) from an uncultured bacterium from wastewater.25

All of these dfrA14-containing plasmids share an almost identical
3 kb region from sul2 to strB, although the strB gene is truncated
(711/837 bp) in pM3224T, suggesting a common origin of this
region, with recombination into the different plasmids. The inser-
tion of dfrA14 in a secondary site within strA was first noted in
pUK1329 isolated from an E. coli of human origin in Scotland in
1995 (accession no. Z50805) but only a 681 bp fragment was
sequenced. Since then, this sequence has been detected in 6.8 kb
plasmids in Enterobacteriaceae of human and animal origin from

Table 1. Genes identified by ResFinder in A. pleuropneumoniae isolates from the UK with resistance to trimethoprim and sulfisoxazole

MIDG
number Year Location Serovar

Trimethoprim
(mg/L)

Sulfisoxazole
(mg/L)

dfrA14a sul2b strAc strBd

contig length contig length contig length contig length

2356 1998 Bury St Edmunds 7 .32 .512 6 3451 6 3451 6 3451 6 3451
2657 2005 Winchester 8 .32 .512 31 1757 26 943 31 1757
2664 2005 Bury St Edmunds 8 .32 .512 65 1421 55 943
3346 2005 Thirsk 8 .32 .512 48 1757 57 943 48 1757
3201 2006 Bury St Edmunds 8 .32 .512 10 1765 28 951 10 1765
3221 2006 Bristol 8 .32 256 20 1761 54 947 20 1761
3349 2006 Thirsk 8 .32 .512 47 1421 60 943
3224 2007 Bury St Edmunds 8 .32 .512 49 3429 49 3429 49 3429 49 3429
3232 2007 Thirsk 8 .32 .512 12 1761 20 947 12 1761
3370 2009 Thirsk 8 .32 .512 57 1759 106 945 57 1759
3371 2009 Thirsk 8 .32 .512 50 1759 95 945 50 1759
3372 2009 Thirsk 8 .32 .512 45 1759 102 945 45 1759
3378 2009 Bury St Edmunds 8 .32 .512 56 1753 15 4128 56 1753
3388 2009 Thirsk 8 .32 .512 6 1777 22 963 6 1777
3389 2009 Thirsk 8 .32 .512 30 1610 16 961 30 1610
3395 2010 Thirsk 8 .32 .512 5 636 26 963 74 442

a99.8% identity (483/483 bp) with dfrA14 from Salmonella enterica subsp. enterica serovar Typhimurium (DQ388123).
b100% identity (816/816 bp) with sul2 from Acinetobacter bereziniae (GQ421466).
c100% identity (529/804 bp) with strA from a Shigella flexneri plasmid (AF321551) for MIDG2356 and MIDG3224, and 99.8% identity (529/804 bp) with
strA from an Erwinia amylovora plasmid (M96392) for all others with strA (NB: in MIDG3395 only 512/804 bp of the gene were detected).
d99.9% identity (705/837 bp) with strB from an Erwinia amylovora plasmid (M96392).
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(a)

(b)

(c)

(d)

Figure 1. Isolation and characterization of newly identified dfrA14-containing A. pleuropneumoniae plasmids. (a) Comparison of plasmid extracts from
MIDG2331DureC::nadV (Lane 1), conjugal donor strains (Lane 2¼MIDG3224 and Lane 4¼MIDG3389) and respective trimethoprim-resistant
transconjugants, showing the transfer of plasmids (Lane 3¼pM3224T and Lane 5¼pM3389T) into MIDG2331DureC::nadV. (b) PCR amplification of
dfrA14 (343 bp amplicon; Lane 1 in each section), sul2 (220 bp amplicon; Lane 2 in each section) and nadV (1.5 kb amplicon; Lane 3 in each section)
from MIDG2331DureC::nadV, MIDG3224, MIDG2331DureC::nadV+pM3224T, MIDG3389 and MIDG2331DureC::nadV+pM3389T, as indicated for each
section of the gel. (c) Schematic comparison of pM3224T with the most closely related Pasteurellaceae plasmid, pB1003, and pCERC1, a
dfrA14-containing plasmid found in Enterobacteriaceae. (d) Schematic comparison of pM3389T with the most closely related Pasteurellaceae
plasmid, pIG1, and pCERC1. Reading frames are indicated by arrows, with arrowheads showing the direction of transcription; only relevant genes
have been annotated (sul2: sulphonamide resistance; strA, strB: streptomycin resistance; dfrA14: trimethoprim resistance; mobA, mobB, mobC:
plasmid mobilization; strB′: partial strB; strA′: partial strA). Dark grey blocks between sequences indicate ≥99% nucleotide sequence identity.
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around the world,22 as well as 5 and 53 kb plasmids in Y. ruckeri24

and an uncultured bacterium,25 respectively, but it has not been
described in plasmids from any member of the Pasteurellaceae.

The complete nucleotide sequence of pM3389T is 6101 bp and
shares greatest similarity (99% identity with 87% coverage) with
pIG1 (accession no. U57647) from P. aerogenes10 and an identical
plasmid found in P. multocida HN0626 (Figure 1d). These previously
identified 5360 bp plasmids encode the strA gene upstream of
sul2, as well as the HEN mobilization genes mentioned above,
although the mobA gene in these plasmids is 1131 bp in length,
with a 273 bp mobB gene encoded within the 3′ end. In
pM3389T, there is an insertion of 173 bp that disrupts the end
of both mobA and mobB, resulting in a 924 bp mobA gene with
an altered 3′ end and no functional mobB gene. In addition, the
strA gene is disrupted by the same 568 bp dfrA14-carrying elem-
ent described above. However, this is the first known description of
this gene arrangement upstream of sul2, indicating the separate
recombination of just the DstrA-dfrA14-DstrA cassette instead of
the entire sul2-DstrA-dfrA14-DstrA-strB region.

In both pM3224T and pM3389T, there is an 823 bp sequence
upstream of mobC with 99% identity to the putative oriV originally
identified in pLS88 (accession no. L23118)27 and common in
numerous Pasteurellaceae plasmids.21 Although plasmids with
similar oriV regions have been reported to replicate in E. coli,
attempts to transform pM3224T and pM3389T into E. coli Stellar
cells by heat shock have not been successful. It is possible that
these plasmids could be transformed into E. coli by electropor-
ation, but this was not investigated as isolation of the plasmids
was achieved by conjugation into MIDG2331DureC::nadV. A
graphical analysis of the pM3224T and pM3389T sequences
revealed that the region containing the oriV and mobilization
genes has a GC content of 41%–42%, reflecting the average for
Pasteurellaceae, whereas the regions containing the antimicrobial
resistance genes have a GC content of 54%–55% and are likely of
enterobacterial origin, as previously suggested for antimicrobial
resistance genes in other Pasteurellaceae plasmids.28

When the complete sequences of pM3224Tand pM3389T were
used to search the draft genomes of the remaining trimethoprim-
resistant isolates using BLASTn, contigs were identified that could
be assembled into plasmids with high identity (99%–100%) to
either the 6050 bp plasmid (MIDG2356 and MIDG3224) or the
6101 bp plasmid (all other trimethoprim-resistant isolates).
These data indicate that the 6050 and 6101 bp plasmids have
been in the UK A. pleuropneumoniae population since at least
1998 and 2005, respectively. The use of trimethoprim/sulphona-
mide combinations to treat A. pleuropneumoniae infection and
other diseases in pigs provides selective pressure for mainten-
ance, and the coexistence of different pathogens may facilitate
the transfer of these antimicrobial resistance plasmids between
different species.

In conclusion, we report here for the first time, to our knowl-
edge, dfrA14 in the Pasteurellaceae, which will facilitate the devel-
opment of PCR assays for resistance to trimethoprim, a clinically
important antimicrobial.
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15 Bossé JT, Soares-Bazzolli DM, Li Y et al. The generation of successive
unmarked mutations and chromosomal insertion of heterologous genes
in Actinobacillus pleuropneumoniae using natural transformation. PLoS
One 2014; 9: e111252.

16 Clinical and Laboratory Standards Institute. Performance Standards for
Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated
From Animals—Third Edition: Approved Standard M31-A3. CLSI, Wayne,
PA, USA, 2008.

17 Howell KJ, Weinert LA, Luan S-L et al. Gene content and diversity of the
loci encoding biosynthesis of capsular polysaccharides of the 15 serovar
reference strains of Haemophilus parasuis. J Bacteriol 2013; 195: 4264–73.
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