81 research outputs found
Using Machine Learning and Natural Language Processing to Review and Classify the Medical Literature on Cancer Susceptibility Genes
PURPOSE: The medical literature relevant to germline genetics is growing
exponentially. Clinicians need tools monitoring and prioritizing the literature
to understand the clinical implications of the pathogenic genetic variants. We
developed and evaluated two machine learning models to classify abstracts as
relevant to the penetrance (risk of cancer for germline mutation carriers) or
prevalence of germline genetic mutations. METHODS: We conducted literature
searches in PubMed and retrieved paper titles and abstracts to create an
annotated dataset for training and evaluating the two machine learning
classification models. Our first model is a support vector machine (SVM) which
learns a linear decision rule based on the bag-of-ngrams representation of each
title and abstract. Our second model is a convolutional neural network (CNN)
which learns a complex nonlinear decision rule based on the raw title and
abstract. We evaluated the performance of the two models on the classification
of papers as relevant to penetrance or prevalence. RESULTS: For penetrance
classification, we annotated 3740 paper titles and abstracts and used 60% for
training the model, 20% for tuning the model, and 20% for evaluating the model.
The SVM model achieves 89.53% accuracy (percentage of papers that were
correctly classified) while the CNN model achieves 88.95 % accuracy. For
prevalence classification, we annotated 3753 paper titles and abstracts. The
SVM model achieves 89.14% accuracy while the CNN model achieves 89.13 %
accuracy. CONCLUSION: Our models achieve high accuracy in classifying abstracts
as relevant to penetrance or prevalence. By facilitating literature review,
this tool could help clinicians and researchers keep abreast of the burgeoning
knowledge of gene-cancer associations and keep the knowledge bases for clinical
decision support tools up to date
PLoS Biol
The eukaryotic XPD helicase is an essential subunit of TFIIH involved in both transcription and nucleotide excision repair (NER). Mutations in human XPD are associated with several inherited diseases such as xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. We performed a comparative analysis of XPD from Homo sapiens and Chaetomium thermophilum (a closely related thermostable fungal orthologue) to decipher the different molecular prerequisites necessary for either transcription or DNA repair. In vitro and in vivo assays demonstrate that mutations in the 4Fe4S cluster domain of XPD abrogate the NER function of TFIIH and do not affect its transcriptional activity. We show that the p44-dependent activation of XPD is promoted by the stimulation of its ATPase activity. Furthermore, we clearly demonstrate that XPD requires DNA binding, ATPase, and helicase activity to function in NER. In contrast, these enzymatic properties are dispensable for transcription initiation. XPD helicase is thus exclusively devoted to NER and merely acts as a structural scaffold to maintain TFIIH integrity during transcription
Recommended from our members
Parental experiences of supporting children with clinically significant post-traumatic distress: a qualitative study of families accessing psychological services
The aim of this study was to investigate the experiences of parents in providing support to their child following trauma exposure in cases where children are experiencing clinically significant levels of post-traumatic distress. Qualitative interviews were conducted with parents whose child was exposed to a trauma and referred for psychological treatment. Parents reported considerable anxiety in coping with their child’s post-traumatic distress. Avoidance of trauma-related discussions was encouraged due to concerns that non-avoidant approaches may worsen children’s post-trauma difficulties. Nonetheless, parents were often sensitive to their child’s distress and offered reassurance and other forms of support. Many barriers existed to accessing psychological treatment, and perceptions of inadequate guidance from therapists on supporting child adjustment contributed to parental distress. The results illustrate the strategies used by parents in supporting their child post-trauma and may assist mental health professionals in providing acceptable guidance to parents following child trauma
Efficacy and cost-effectiveness of an outcall program to reduce carer burden and depression among carers of cancer patients (PROTECT) : rationale and design of a randomized controlled trial
Published: 6 January 2014BACKGROUND: Carers provide extended and often unrecognized support to people with cancer. The aim of this study is to test the hypothesis that excessive carer burden is modifiable through a telephone outcall intervention that includes supportive care, information and referral to appropriate psycho-social services. Secondary aims include estimation of changes in psychological health and quality of life. The study will determine whether the intervention reduces unmet needs among patient dyads. A formal economic program will also be conducted. METHODS/DESIGN: This study is a single-blind, multi-centre, randomized controlled trial to determine the efficacy and cost-efficacy of a telephone outcall program among carers of newly diagnosed cancer patients. A total of 230 carer/patient dyads will be recruited into the study; following written consent, carers will be randomly allocated to either the outcall intervention program (n = 115) or to a minimal outcall / attention control service (n = 115). Carer assessments will occur at baseline, at one and six months post-intervention. The primary outcome is change in carer burden; the secondary outcomes are change in carer depression, quality of life, health literacy and unmet needs. The trial patients will be assessed at baseline and one month post-intervention to determine depression levels and unmet needs. The economic analysis will include perspectives of both the health care sector and broader society and comprise a cost-consequences analysis where all outcomes will be compared to costs. DISCUSSION: This study will contribute to our understanding on the potential impact of a telephone outcall program on carer burden and provide new evidence on an approach for improving the wellbeing of carers.Patricia M Livingston, Richard H Osborne, Mari Botti, Cathy Mihalopoulos, Sean McGuigan, Leila Heckel, Kate Gunn, Jacquie Chirgwin, David M Ashley and Melinda William
Convergence of marine megafauna movement patterns in coastal and open oceans
Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 115 (2018): 3072-3077, doi:10.1073/pnas.1716137115.The extent of increasing anthropogenic impacts on large marine
vertebrates partly depends on the animals’ movement patterns.
Effective conservation requires identification of the key drivers of
movement including intrinsic properties and extrinsic constraints
associated with the dynamic nature of the environments the animals
inhabit. However, the relative importance of intrinsic versus
extrinsic factors remains elusive. We analyse a global dataset of
2.8 million locations from > 2,600 tracked individuals across 50
marine vertebrates evolutionarily separated by millions of years
and using different locomotion modes (fly, swim, walk/paddle).
Strikingly, movement patterns show a remarkable convergence,
being strongly conserved across species and independent of body
length and mass, despite these traits ranging over 10 orders of
magnitude among the species studied. This represents a fundamental
difference between marine and terrestrial vertebrates not
previously identified, likely linked to the reduced costs of locomotion
in water. Movement patterns were primarily explained by the
interaction between species-specific traits and the habitat(s) they
move through, resulting in complex movement patterns when
moving close to coasts compared to more predictable patterns
when moving in open oceans. This distinct difference may be
associated with greater complexity within coastal micro-habitats,
highlighting a critical role of preferred habitat in shaping marine
vertebrate global movements. Efforts to develop understanding
of the characteristics of vertebrate movement should consider the
habitat(s) through which they move to identify how movement
patterns will alter with forecasted severe ocean changes, such as
reduced Arctic sea ice cover, sea level rise and declining oxygen
content.Workshops funding granted by the UWA Oceans Institute, AIMS, and
KAUST. AMMS was supported by an ARC Grant DE170100841 and an IOMRC
(UWA, AIMS, CSIRO) fellowship; JPR by MEDC (FPU program, Spain); DWS by
UK NERC and Save Our Seas Foundation; NQ by FCT (Portugal); MMCM by
a CAPES fellowship (Ministry of Education)
Pneumolysin Activates the NLRP3 Inflammasome and Promotes Proinflammatory Cytokines Independently of TLR4
Pneumolysin (PLY) is a key Streptococcus pneumoniae virulence factor and potential candidate for inclusion in pneumococcal subunit vaccines. Dendritic cells (DC) play a key role in the initiation and instruction of adaptive immunity, but the effects of PLY on DC have not been widely investigated. Endotoxin-free PLY enhanced costimulatory molecule expression on DC but did not induce cytokine secretion. These effects have functional significance as adoptive transfer of DC exposed to PLY and antigen resulted in stronger antigen-specific T cell proliferation than transfer of DC exposed to antigen alone. PLY synergized with TLR agonists to enhance secretion of the proinflammatory cytokines IL-12, IL-23, IL-6, IL-1β, IL-1α and TNF-α by DC and enhanced cytokines including IL-17A and IFN-γ by splenocytes. PLY-induced DC maturation and cytokine secretion by DC and splenocytes was TLR4-independent. Both IL-17A and IFN-γ are required for protective immunity to pneumococcal infection and intranasal infection of mice with PLY-deficient pneumococci induced significantly less IFN-γ and IL-17A in the lungs compared to infection with wild-type bacteria. IL-1β plays a key role in promoting IL-17A and was previously shown to mediate protection against pneumococcal infection. The enhancement of IL-1β secretion by whole live S. pneumoniae and by PLY in DC required NLRP3, identifying PLY as a novel NLRP3 inflammasome activator. Furthermore, NLRP3 was required for protective immunity against respiratory infection with S. pneumoniae. These results add significantly to our understanding of the interactions between PLY and the immune system
The National Cancer Institute’s Community Networks Program Initiative to Reduce Cancer Health Disparities: Outcomes and Lessons Learned
We describe reach, partnerships, products, benefits, and lessons learned of the 25 Community Network Programs (CNPs) that applied community-based participatory research (CBPR) to reduce cancer health disparities
Mutations in KEOPS-Complex Genes Cause Nephrotic Syndrome with Primary Microcephaly
Galloway-Mowat syndrome (GAMOS) is an autosomal-recessive disease characterized by the combination of early-onset nephrotic syndrome (SRNS) and microcephaly with brain anomalies. Here we identified recessive mutations in OSGEP, TP53RK, TPRKB, and LAGE3, genes encoding the four subunits of the KEOPS complex, in 37 individuals from 32 families with GAMOS. CRISPR-Cas9 knockout in zebrafish and mice recapitulated the human phenotype of primary microcephaly and resulted in early lethality. Knockdown of OSGEP, TP53RK, or TPRKB inhibited cell proliferation, which human mutations did not rescue. Furthermore, knockdown of these genes impaired protein translation, caused endoplasmic reticulum stress, activated DNA-damage-response signaling, and ultimately induced apoptosis. Knockdown of OSGEP or TP53RK induced defects in the actin cytoskeleton and decreased the migration rate of human podocytes, an established intermediate phenotype of SRNS. We thus identified four new monogenic causes of GAMOS, describe a link between KEOPS function and human disease, and delineate potential pathogenic mechanisms
Deep temporal models and active inference
How do we navigate a deeply structured world? Why are you reading this sentence first – and did you actually look at the fifth word? This review offers some answers by appealing to active inference based on deep temporal models. It builds on previous formulations of active inference to simulate behavioural and electrophysiological responses under hierarchical generative models of state transitions. Inverting these models corresponds to sequential inference, such that the state at any hierarchical level entails a sequence of transitions in the level below. The deep temporal aspect of these models means that evidence is accumulated over nested time scales, enabling inferences about narratives (i.e., temporal scenes). We illustrate this behaviour with Bayesian belief updating – and neuronal process theories – to simulate the epistemic foraging seen in reading. These simulations reproduce perisaccadic delay period activity and local field potentials seen empirically. Finally, we exploit the deep structure of these models to simulate responses to local (e.g., font type) and global (e.g., semantic) violations; reproducing mismatch negativity and P300 responses respectively
- …