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A B S T R A C T

How do we navigate a deeply structured world? Why are you reading this sentence first – and did you actually

look at the fifth word? This review offers some answers by appealing to active inference based on deep temporal

models. It builds on previous formulations of active inference to simulate behavioural and electrophysiological

responses under hierarchical generative models of state transitions. Inverting these models corresponds to

sequential inference, such that the state at any hierarchical level entails a sequence of transitions in the level

below. The deep temporal aspect of these models means that evidence is accumulated over nested time scales,

enabling inferences about narratives (i.e., temporal scenes). We illustrate this behaviour with Bayesian belief

updating – and neuronal process theories – to simulate the epistemic foraging seen in reading. These simulations

reproduce perisaccadic delay period activity and local field potentials seen empirically. Finally, we exploit the

deep structure of these models to simulate responses to local (e.g., font type) and global (e.g., semantic)

violations; reproducing mismatch negativity and P300 responses respectively.

1. Introduction

In recent years, we have applied the free energy principle to
generative models of worlds that can be described in terms of discrete

states in an attempt to understand the embodied Bayesian brain. The
resulting active inference scheme (for Markov decision processes) has

been applied in a variety of domains (see Table 1). This paper takes

active inference to the next level and considers hierarchical models
with deep temporal structure (George and Hawkins, 2009; Kiebel et al.,

2009; LeCun et al., 2015). This structure follows from generative
models that entertain state transitions or sequences over time. The

resulting model enables inference about narratives with deep temporal
structure (c.f., sequential scene construction) of the sort seen in reading.

In short, equipping an agent or simulated subject with deep temporal
models allows them to accumulate evidence over different temporal

scales to find the best explanation for their sensations.
This paper has two agendas: to introduce hierarchical (deep)

generative models for active inference under Markov decision processes
(or hidden Markov models) and to show how their belief updating can

be understood in terms of neuronal processes. The problem we focus on
is how subjects deploy active vision to disambiguate the causes of their

sensations. In other words, we ask how people choose where to look
next, when resolving uncertainty about the underlying conceptual,

semantic or lexical causes of sensory input. This means that we are not
concerned with computational linguistics per se but the more general

problem of epistemic foraging, while using reading as an example.
Epistemics is at the heart of active inference, which is all about

reducing surprise or uncertainty, where uncertainty is expected sur-
prise. Technically, this means that one can describe both inference

(perception) and behaviour (action) in terms of minimising a free

energy functional of probabilistic or Bayesian beliefs. In this setting,
variational free energy approximates surprise and expected free energy

approximates uncertainty (a.k.a. entropy). This single imperative
provides an inclusive account of established (normative) approaches

to perception and action; for example, the principle of maximum
mutual information, the principle of minimum redundancy, formula-

tions of saliency as Bayesian surprise, risk sensitive or KL control,
expected utility theory, and so on (Barlow, 1974; Itti and Baldi, 2009;

Kappen et al., 2012; Ortega and Braun, 2013). Our focus here is on how
subjects use accumulated beliefs about the hidden states of the world to

prescribe active sampling of new information to resolve their uncer-
tainty quickly and efficiently (Ferro et al., 2010).

Our second agenda is to translate these normative (variational)
principles into neurobiology by trying to establish the construct validity

of active inference in terms of behaviour and electrophysiological
responses. We do this at three levels: first, by highlighting the similarity
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between the message passing implied by minimising variational free
energy and the neurobiology of neuronal circuits. Specifically, we try to

associate the dynamics of a gradient descent on variational free energy
with neuronal dynamics based upon neural mass models (Lopes da

Silva, 1991). Furthermore, the exchange of sufficient statistics implicit
in belief propagation is compared with the known characteristics of

extrinsic (between cortical area) and intrinsic (within cortical area)
neuronal connectivity. Second, we try to reproduce reading-like

behaviour – in which epistemically rich information is sampled by
sparse, judicious saccadic eye movements. This enables us to associate

perisaccadic updating with empirical phenomena, such as delay period
activity and perisaccadic local field potentials (Kojima and Goldman-

Rakic, 1982; Purpura et al., 2003; Pastalkova et al., 2008). Finally, in
terms of the non-invasive electrophysiology, we try to reproduce the

well-known violation responses indexed by phenomena like the mis-
match negativity (MMN) and P300 waveforms in event related poten-

tial research (Strauss et al., 2015).
This paper comprises four sections. The first (Active inference and

free energy) briefly reviews active inference, establishing the normative
principles that underlie action and perception. The second section

(Belief propagation and neuronal networks) considers action and
perception, paying special attention to hierarchical generative models

and how the minimisation of free energy could be implemented in the
brain. The third section (Simulations of reading) introduces a particular

generative model used to simulate reading and provides an illustration

of the ensuing behaviour – and simulated electrophysiological re-
sponses. The final section (Simulations of classical violation responses)

rehearses the reading simulations using different prior beliefs to
simulate responses to violations at different hierarchical levels in the

model.

2. Active inference and free energy

Active inference rests upon a generative model that is used to infer

the most likely causes of observable outcomes in terms of expected
states of the world. A generative model is just a probabilistic specifica-

tion of how consequences (outcomes) follow from causes (states). These
states are called latent or hidden because they can only be inferred

through observations. Clearly, observations depend upon action (e.g.,
where you are looking). This requires the generative model to represent

outcomes under different actions or policies. Technically, expectations
about (future) outcomes and their hidden causes are optimised by

minimising variational free energy, which renders them the most likely
(posterior) expectations about the (future) states of the world, given

(past) observations. This follows because the variational free energy is
an upper bound on (negative) log Bayesian model evidence; also known

as surprise, surprisal or self-information (Dayan et al., 1995). Crucially,
the prior probability of each policy (i.e., action or plan) is the free

energy expected under that policy (Friston et al., 2015). This means
that policies are more probable if they minimise expected surprise or

resolve uncertainty.
Evaluating the expected free energy of plausible policies – and

implicitly their posterior probabilities – enables the most likely action
to the selected. This action generates a new outcome and the cycle of

perception and action starts again. The resulting behaviour represents a
principled sampling of sensory cues that has epistemic, uncertainty

reducing and pragmatic, surprise reducing aspects. The pragmatic
aspect follows from prior beliefs or preferences about future outcomes

that makes some outcomes more surprising than others. For example, I
would not expect to find myself dismembered or humiliated – and

would therefore avoid these surprising state of affairs. On this view,
behaviour is dominated by epistemic imperatives until there is no

further uncertainty to resolve. At this point pragmatic (prior) prefer-

ences predominate, such that explorative behaviour gives way to
exploitative behaviour. In this paper, we focus on epistemic behaviour

and only use prior preferences to establish a task or instruction set.
Namely, to report a categorical decision when sufficiently confident;

i.e., under the prior belief one does not make mistakes.

2.1. Hierarchical generative models

We are concerned here with hierarchical generative models in

which the outcomes of one level generate the hidden states at a lower
level. Fig. 1 provides a schematic of this sort of model. Outcomes

depend upon hidden states, while hidden states unfold in a way that
depends upon a sequence of actions or a policy. The generative model is

Table 1

Applications of active inference for Markov decision processes.

Application Comment References

Decision making under uncertainty Initial formulation of active inference for Markov decision processes

and sequential policy optimisation

Friston et al. (2012b)

Optimal control (the mountain car problem) Illustration of risk sensitive or KL control in an engineering benchmark Friston et al. (2012a)

Evidence accumulation: Urns task Demonstration of how beliefs states are absorbed into a generative

model

FitzGerald et al. (2015b, 2015c)

Addiction Application to psychopathology Schwartenbeck et al. (2015c)

Dopaminergic responses Associating dopamine with the encoding of (expected) precision

provides a plausible account of dopaminergic discharges

Friston et al. (2014), FitzGerald

et al. (2015a)

Computational fMRI Using Bayes optimal precision to predict activity in dopaminergic

areas

Schwartenbeck et al. (2015a)

Choice preferences and epistemics Empirical testing of the hypothesis that people prefer to keep options

open

Schwartenbeck et al. (2015b)

Behavioural economics and trust games Examining the effects of prior beliefs about self and others Moutoussis et al. (2014)

Foraging and two step mazes Formulation of epistemic and pragmatic value in terms of expected free

energy

Friston et al. (2015)

Habit learning, reversal learning and devaluation Learning as minimising variational free energy with respect to model

parameters – and action selection as Bayesian model averaging

FitzGerald et al. (2014), Friston

et al. (2016)

Saccadic searches and scene construction Mean field approximation for multifactorial hidden states, enabling

high dimensional beliefs and outcomes: c.f., functional segregation

Friston and Buzsaki (2016),

Mirza et al. (2016)

Electrophysiological responses: place-cell activity, omission related

responses, mismatch negativity, P300, phase-procession, theta-

gamma coupling

Simulating neuronal processing with a gradient descent on variational

free energy; c.f., dynamic Bayesian belief propagation based on

marginal free energy

In press

Structure learning, sleep and insight Inclusion of parameters into expected free energy to enable structure

learning via Bayesian model reduction

Under review

Narrative construction and reading Hierarchical generalisation of generative model with deep temporal

structure

Current paper

K.J. Friston et al. Neuroscience and Biobehavioral Reviews 77 (2017) 388–402

389



specified by two sets of matrices (or arrays). The first set A(i,m), maps

from hidden states to the m-th outcome or modality at the i-th level; for
example, exteroceptive (e.g., visual) or proprioceptive (e.g., eye posi-

tion) observations. The second set: B(i,n)(u), prescribes the transitions
among the n-th hidden state or factor, at the i-th level, under action u.

Hidden factors correspond to different states of the world, such as the
location (i.e., where) and category (i.e., what) of an object. Hierarchical

levels are linked by D(i,n) that play a similar role to A(i,m). However,
instead of mapping from hidden states to outcomes they map from

hidden states at the given level to the initial states of the n-th factor at
the level below. A more detailed description of these parameters can be

found in Table 2 and the Appendix A. For simplicity, Fig. 1 assumes
there is a single hidden factor and outcome modality.

The generative model in Fig. 1 generates outcomes in the following

way: first, a policy (action or plan) is selected at the highest level using
a softmax function of their expected free energies. Sequences of hidden

states are then generated using the probability transitions specified by
the selected policy (encoded in B matrices). These hidden states

generate outcomes and initial hidden states in the level below (accord-
ing to A and D matrices). In addition, hidden states can influence the

expected free energy (through C matrices) and therefore influence the
policies that determine transitions among subordinate states. The key

aspect of this generative model is that state transitions proceed at
different rates at different levels of the hierarchy. In other words, the

hidden state at a particular level entails a sequence of hidden states at

the level below. This is a necessary consequence of conditioning the

initial state at any level on the hidden states in the level above.
Heuristically, this hierarchical model generates outcomes over nested

timescales; like the second-hand of a clock that completes a cycle for
every tick of the minute-hand that, in turn precesses more quickly than

the hour hand. It is this particular construction that lends the generative
model a deep temporal architecture. In other words, hidden states at

higher levels contextualise transitions or trajectories of hidden states at
lower levels; generating a deep dynamic narrative.

2.2. Variational free energy and inference

For any given generative model, active inference corresponds to
optimising expectations of hidden states and policies with respect to

variational free energy. These expectations constitute the sufficient
statistics of posterior beliefs, usually denoted by the probability

distribution , where are hidden or unknown states and
policies. This optimisation can be expressed mathematically as:where

denotes observations up until the current time point and

represents hidden states over all the time points in a
sequence. Because the (KL) divergence between a subject’s beliefs and

the true posterior cannot be less than zero, the penultimate equality
means that free energy is minimised when the two are the same. At this

point, the free energy becomes the surprise or negative log evidence for
the generative model (Beal, 2003). In other words, minimising free

Fig. 1. Generative model and (approximate) posterior. Left panel: these equations specify the generative model. A generative model is the joint probability of outcomes or

consequences and their (latent or hidden) causes, see top equation. Usually, the model is expressed in terms of a likelihood (the probability of consequences given causes) and priors over

causes. When a prior depends upon a random variable it is called an empirical prior. Here, the likelihood is specified by an array A whose elements are the probability of an outcome under

every combination of hidden states. The empirical priors pertain to probabilistic transitions (in the B arrays) among hidden states that can depend upon action, which is determined

probabilistically by policies (sequences of actions encoded by π). The key aspect of this generative model is that policies are more probable a priori if they minimise the (path integral of)

expected free energy G, which depends upon our prior preferences about outcomes encoded by the array C. Finally, the D arrays specified the initial state, given the state of the level

above. This completes the specification of the model in terms of parameter arrays that constitute A, B, C and D. Bayesian model inversion refers to the inverse mapping from consequences

to causes; i.e., estimating the hidden states and other variables that cause outcomes. In variational Bayesian inversion, one has to specify the form of an approximate posterior

distribution, which is provided in the lower panel. This particular form uses a mean field approximation, in which posterior beliefs are approximated by the product of marginal

distributions over hierarchical levels and points in time. Subscripts index time (or policy), while (bracketed) superscripts index hierarchical level. See the main text and Table 2 for a

detailed explanation of the variables (italic variables represent hidden states, while bold variables indicate expectations about those states). Right panel: this Bayesian graph represents

the conditional dependencies among hidden states and how they cause outcomes. Open circles are random variables (hidden states and policies) while filled circles denote observable

outcomes. The key aspect of this model is its hierarchical structure that represents sequences of hidden states over time or epochs. In this model, hidden states at higher levels generate the

initial states for lower levels – that then unfold to generate a sequence of outcomes: c.f., associative chaining (Page and Norris, 1998). Crucially, lower levels cycle over a sequence for

each transition of the level above. This is indicated by the variables outlined in red, which are ‘reused’ as higher levels unfold. It is this scheduling that endows the model with deep

temporal structure. Note that hidden states at any level can generate outcomes and hidden states at the lower level. Furthermore, the policies at each level depend upon the hidden states

of the level above – and are in play for the sequence of state transitions at the level below. This means that hidden states can influence subordinate states in two ways: by specifying the

initial states – or via policy-dependent state transitions. Please see main text and Table 2 for a definition of the variables. For clarity, time subscripts have been omitted from hidden states

at level i+ 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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energy is equivalent to minimising the complexity of accurate explana-
tions for observed outcomes.

In active inference, both beliefs and action minimise free energy.
However, beliefs cannot affect outcomes. This means that action affords

the only means of minimising surprise, where action minimises
expected free energy; i.e. expected surprise or uncertainty. In turn, this

rests on equipping subjects with the prior beliefs that their policies will
minimise expected free energy (Friston et al., 2015):Here, G(π,τ)

denotes the expected free energy of a particular policy at a particular

time, and is the predictive distribu-
tion over hidden states and outcomes under that policy. Comparing the

expressions for expected free energy (Eq. (2)) with variational free
energy (Eq. (1)), we see that the (negative) divergence becomes

epistemic value and the log evidence becomes expected value – provided
we associate the prior preference over future outcomes with value. In

other words, valuable outcomes are those we expect to encounter and
costly outcomes are surprising (e.g., being in pain). The last equality

provides a complementary interpretation; in which complexity becomes
risk, and inaccuracy becomes ambiguity. Please see the appendices for

derivations.
There are several special cases of expected free energy that appeal to

(and contextualise) established constructs. For example, maximising
epistemic value is equivalent to maximising (expected) Bayesian

surprise (Itti and Baldi, 2009), where Bayesian surprise is the diver-
gence between posterior and prior beliefs. This can also be interpreted

as the principle of maximum mutual information or minimum redun-
dancy (Barlow, 1961; Linsker, 1990; Olshausen and Field, 1996;

Laughlin, 2001). In this context, epistemic value is the expected mutual

information between future states and their consequences, which is also

known as information gain. Because epistemic value (i.e., mutual
information) cannot be less than zero, it disappears when the (pre-

dictive) posterior ceases to be informed by new observations. This
means epistemic behaviour will search out observations that resolve

uncertainty (e.g., foraging to find a prey or turning on the light in a
dark room). However, when the agent is confident about the state of the

world, there can be no further information gain and pragmatic (prior)
preferences dominate. Crucially, epistemic and expected values have a

definitive quantitative relationship, which means there is no need to
adjudicate between explorative, epistemic uncertainty reducing and

exploitative, pragmatic goal directed behaviour. The switch between
behavioural policies emerges naturally from minimising expected free

energy. This switch depends on the relative contribution of epistemic

and expected value, thereby resolving the exploration-exploitation
dilemma. Furthermore, in the absence of any precise preferences,

purposeful behaviour is purely epistemic in nature. In what follows,
we will see that prior preferences or goals are usually restricted to the

Table 2

Glossary of expressions (for the i-th hierarchical level of a generative model).

Expression Description

Outcomes in M

modalities at each

time point, taken to

be ‘one-in-K’ vectors

of dimension D(i,m)

Sequences of

outcomes until the

current time point

Hidden states of the

n-th factor at each

time point and their

posterior

expectations under

each policy

Sequences of hidden

states until the end of

the current sequence

Sequential policies

specifying controlled

transitions within N

hidden factors over

time and their

posterior

expectations

Action or control

variables for the n-th

factor of hidden

states at a particular

time specified by a

policy

Auxiliary

(depolarisation)

variable

corresponding to the

surprise of an

expected state – a

softmax function of

depolarisation

Predictive posterior

over future outcomes

using a generalised

dot product (sum of

products) operator

Bayesian model

average of hidden

states over policies

Likelihood tensor

mapping from

hidden states to the

m-th modality

Transition

probability for the n-

th hidden state under

an action (prescribed

by a policy at a

particular time)

Prior probability of

the m-th outcome at

the i-th level

conditioned on the n-

th (hierarchical)

context

Prior probability of

the n-th initial state

at the i-th level

conditioned on the n-

Table 2 (continued)

Expression Description

th (hierarchical)

context

Marginal free energy

for each policy

Expected free energy

for each policy

Entropy of outcomes

under each

combination of states

in the m-th modality
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highest levels of a hierarchy. This means that active inference at lower
levels is purely uncertainty reducing, where action ceases when

uncertainty approaches zero (in this paper, a sequence of actions
terminates when the uncertainty about states prescribed by higher

levels is nats or less).

2.3. Summary

Minimising expected free energy is essentially the same as avoiding
surprises and resolving uncertainty. This resolution of uncertainty is

closely related to satisfying artificial curiosity (Schmidhuber, 1991; Still
and Precup, 2012) and speaks to the value of information (Howard,

1966). Expected free energy can be expressed in terms of epistemic and
expected value – or in terms of risk and ambiguity. The expected

complexity or risk is exactly the same quantity minimised in risk
sensitive or KL control (Klyubin et al., 2005; van den Broek et al.,

2010), and underpins related (free energy) formulations of bounded
rationality based on complexity costs (Braun et al., 2011; Ortega and

Braun, 2013). In other words, minimising expected complexity renders
behaviour risk-sensitive, while maximising expected accuracy induces

ambiguity-resolving behaviour. In the next section, we look more
closely at how this minimisation is implemented.

3. Belief propagation and neuronal networks

Having defined a generative model, the expectations encoding

posterior beliefs (and action) can be optimised by minimising varia-

tional free energy. Fig. 2 provides the mathematical expressions for this
optimisation or belief updating. Although the updates look a little

complicated, they are remarkably plausible in terms of neurobiological
process theories (Friston et al., 2014). In brief, minimising variational

free energy means that expectations about allowable policies become a
softmax function of variational and expected free energy, where the

(path integral) of variational free energy scores the evidence that a
particular policy is being pursued (Eq. 1.c in Fig. 2). Conversely, the

expected free energy plays the role of a prior over policies that reflect
their ability to resolve uncertainty (Eq. 1.d). The resulting policy

expectations are used to predict the state at each level in the form of
a Bayesian model average; in other words, the expected states under each

policy are combined in proportion to the expected probability of each
policy (Eq. 2.d). These Bayesian model averages then provide (top-

down) prior constraints on the initial states of the level below. Finally,
expectations about policies enable the most likely action to be selected

at each level of the hierarchy. Fig. 2 only shows action selection for the
lowest (first) level.

Of special interest here, are the updates for expectations of hidden
states (for each policy and time). These have been formulated as a

gradient descent on variational free energy (see Appendix A1). This
furnishes a dynamical process theory that can be tested against

empirical measures of neuronal dynamics. Specifically, the Bayesian
updating or belief propagation (see Appendix A2) has been expressed so

that it can be understood in terms of neurophysiology. Under this
interpretation, expected states are a softmax function of log expecta-

tions that can be associated with neuronal depolarisation (Eq. 2.b). In
other words, the softmax function becomes a firing rate function of

depolarisation, where changes in postsynaptic potential are caused by
currents induced by presynaptic input from prediction error units (Eq.

2.a). In this formulation, state prediction errors are the difference
between the log expected state and its prediction from observed

outcomes, the preceding state and subsequent state (Eq. 1.a). Similarly,

outcome prediction errors are the difference between the log expected
outcome and the outcome predicted by hidden states in the level above

(Eq. 1.b). Physiologically, this means that when state prediction error
unit activity is suppressed, there is no further depolarisation of

expectation units and their firing attains a variational free energy
minimum. This suggests that for every expectation unit there should be

a companion error unit, whose activity is the rate of change of
depolarisation of the expectation unit; for example, excitatory (expec-

tation) pyramidal cells and fast spiking inhibitory (error) interneurons
(Sohal et al., 2009; Cruikshank et al., 2012; Lee et al., 2013).

3.1. Extrinsic and intrinsic connectivity

The graphics in Fig. 2 have assigned various expectations and errors

to neuronal populations in specific cortical layers. This (speculative)
assignment, allows one to talk about the functional anatomy of extrinsic

and intrinsic connectivity in terms of belief propagation. In brief, the
mathematical form of Bayesian belief updating tells us which neuronal

representations talk to each other. For example, in a hierarchical
setting, the only sufficient statistics that are exchanged between levels

are the Bayesian model averages of expected states. This means, by
definition, that the Bayesian model averages must be encoded by

principal cells that send neuronal connections to other areas in the
cortical hierarchy. These are the superficial and deep pyramidal cells

show in red in Fig. 2. Next, we know that the targets of ascending
extrinsic (feedforward) connections from superficial pyramidal cells are

the spiny stellate cells in Layer 4 (Felleman and Van Essen, 1991; Bastos
et al., 2012; Markov et al., 2013). The only sufficient statistics in receipt

of Bayesian model averages from the level below are policy-specific
expectations about hidden states. These can be associated with spiny

stellate cells (upper cyan layer in Fig. 2). These sufficient statistics are
combined to form the Bayesian model average in superficial pyramidal

cells, exactly as predicted by quantitative connectivity studies of the
canonical cortical microcircuit (Thomson and Bannister, 2003). One

can pursue this game and – with some poetic license – reproduce the
known quantitative microcircuitry of inter-and intralaminar connec-

tions. Fig. 3 illustrates one solution that reproduces not only the major

intrinsic connections but also their excitatory and inhibitory nature.
This arrangement suggests that inhibitory interneurons play the role of

error units (which is consistent with the analysis above), while policy-
specific expectations are again encoded by excitatory neurons in Layer

4. Crucially, this requires a modulatory weighting of the intrinsic
feedforward connections from expectation units to their Bayesian

model averages in the superficial layers. This brings us to extrinsic
connections and the neuronal encoding of policies in the cortico-basal

ganglia-thalamic loops.

3.2. Extrinsic connectivity and cortico-subcortical loops

According to the belief propagation equations, expected policies rest
upon their variational and expected free energy. These free energies

comprise (KL) divergences that can always be expressed in terms of an
average prediction error. Here, the variational free energy is the

expected state prediction error, while the expected free energy is the
expected outcome prediction error. These averages are gathered over

all policies and time points within a hierarchical level and are passed
through a sigmoid (softmax) function to produce policy expectations. If

we associate this pooling with cortico-subcortical projections to the
basal ganglia – and the subsequent Bayesian model averaging with

thalamocortical projections to the cortex – there is a remarkable
correspondence between the implicit connectivity (both in terms of

its specificity and excitatory versus inhibitory nature) and the con-
nectivity of the cortico-basal ganglia-thalamocortical loops.

The schematic in Fig. 4 is based upon the hierarchical anatomy of
cortico-basal ganglia-thalamic loops described in (Jahanshahi et al.,

2015). If one subscribes to this functional anatomy, the formal message

passing of belief propagation suggests that competing low level (motor
executive) policies are evaluated in the putamen; intermediate (asso-

ciative) policies in the caudate and high level (limbic) policies in the
ventral striatum. These representations then send (inhibitory or G-

ABAergic) projections to the globus pallidus interna (GPi) that encodes
the expected (selected) policy. These expectations are then commu-
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nicated via thalamocortical projections to superficial layers encoding

Bayesian model averages. From a neurophysiological perspective, the
best candidate for the implicit averaging would be matrix thalamocor-

tical circuits that “appear to be specialized for robust transmission over

relatively extended periods, consistent with the sort of persistent
activation observed during working memory and potentially applicable

to state-dependent regulation of excitability” (Cruikshank et al., 2012).
This deep temporal hierarchy is apparent in hierarchically structured

cortical dynamics – invasive recordings in primates suggest an ante-
roposterior gradient of spontaneous fluctuation time constants consis-

tent with the architecture in Fig. 4 (Kiebel et al., 2008; Murray et al.,
2014). Clearly, there are many anatomical issues that have been

ignored here; such as the distinction between direct and indirect
pathways (Frank, 2005), the role of dopamine in modulating the

precision of beliefs about policies (Friston et al., 2014) and so on.
However, the basic architecture suggested by the above treatment

speaks to the biological plausibility of belief updating under hierarch-
ical generative models.

3.3. Summary

By assuming a generic (hierarchical Markovian) form for the

generative model, it is fairly easy to derive Bayesian updates that

clarify the relationship between perception and action selection. In
brief, the agent first infers the hidden states under each policy that it

entertains. It then evaluates the evidence for each policy based upon
observed outcomes and beliefs about future states. The posterior beliefs

about each policy are used to form a Bayesian model average of the next
outcome, which is realised through action. In hierarchical models, the

implicit belief updating (known as belief propagation in machine
learning) appears to rest on message passing that bears a remarkable

similarity to cortical hierarchies and cortico-basal ganglia-thalamic
loops; both in terms of extrinsic connectivity and intrinsic canonical

(cortical) microcircuits. In the next section, we use this scheme to
simulate reading.

4. Simulations of reading

The remainder of this paper considers simulations of reading using a

Fig. 2. Schematic overview of belief propagation: left panel: these equalities are the belief updates mediating inference (i.e. state estimation) and action selection. These expressions

follow in a fairly straightforward way from a gradient descent on variational free energy. The equations have been expressed in terms of prediction errors that come in two flavours. The

first, state prediction error scores the difference between the (log) expected states under any policy and time (at each hierarchical level) and the corresponding predictions based upon

outcomes and the (preceding and subsequent) hidden states (1.a). These represent likelihood and empirical prior terms respectively. The prediction error drives log-expectations (2.a),

where the expectation per se is obtained via a softmax operator (2.b). The second, outcome prediction error reports the difference between the (log) expected outcome and that predicted

under prior preferences set by the level above (plus an ambiguity term – see appendix) (1.b). This prediction error is weighted by the expected outcomes to evaluate the expected free

energy (1.d). Similarly, the free energy per se is the expected state prediction error, under current beliefs about hidden states (1.c). These policy-specific free energies are combined to give

the policy expectations via a softmax function (2.c). Finally, expectations about hidden states are a Bayesian model average over expected policies (2.d) and expectations about policies

specify the action that is most likely to realise the expected outcome (3). The (Iverson) brackets in Eq. (3) return one if the condition in square brackets is satisfied and zero otherwise.

Right panel: this schematic represents the message passing implicit in the equations on the left. The expectations have been associated with neuronal populations (coloured balls) that are

arranged to highlight the correspondence with known intrinsic (within cortical area) and extrinsic (between cortical areas) connections. Red connections are excitatory, blue connections

are inhibitory and green connections are modulatory (i.e., involve a multiplication or weighting). This schematic illustrates three hierarchical levels (which are arranged horizontally in

this figure, as opposed to vertically in Fig. 1), where each level provides top-down empirical priors for the initial state of the level below, while the lower level supplies evidence for the

current state at the level above. The intrinsic connections mediate the empirical priors and Bayesian model averaging. Cyan units correspond to expectations about hidden states and

(future) outcomes under each policy, while red states indicate their Bayesian model averages. Pink units correspond to (state and outcome) prediction errors that are averaged to evaluate

(variational and expected) free energy and subsequent policy expectations (in the lower part of the network). This (neuronal) network interpretation of belief updating means that

connection strengths correspond to the parameters of the generative model in Fig. 1. Please see Table 2 for a definition of the variables. The variational free energy has been omitted from

this figure because the policies in this paper differ only in the next action. This means the evidence (i.e. variational free energy) from past outcomes is the same for all policies. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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generative model that is a hierarchical extension of a model we have
used previously to illustrate scene construction (Mirza et al., 2016). In

the original paradigm, (simulated) subjects had to sample four quad-
rants of a visual scene to classify the arrangement of visual objects (a

bird, a cat and seeds) into one of three categories (flee, feed or wait). If
the bird and cat were next to each other (in the upper or lower

quadrants) the category was flee. If the bird was next to the seeds, the
category was feed. Alternatively, if the bird and seeds occupied diagonal

quadrants, the category was wait. Here, we treat the visual objects as
letters and the scene as a word; enabling us to add a hierarchical level

to generate sentences or sequences of words. The subject’s task was to
categorise sentences of four words into happy or sad narratives; where

happy narratives concluded with a feed or wait in the final two words.
Somewhat arbitrarily, we restricted the hypotheses at the second level

to 6 sentences (see Fig. 5). By stimulating reading, we hoped to produce
realistic sequences of saccadic eye movements, in which the subject

interrogated local features (i.e. letters) with sparse and informative
foveal sampling; in other words, jumping to key letter features and

moving to the next word as soon as the current word could be inferred
confidently. Furthermore, because the subject has a deep model, she

already has in mind the words and letters that are likely to be sampled
in the future; enabling an efficient foraging for information.

To simulate this sort of task, one needs to specify the hidden factors,

allowable policies and prior preferences. Fig. 5 illustrates the factorisa-
tion and hierarchical structure of the resulting model. At the highest

level there are three hidden factors (only two are shown in the figure
for simplicity). These comprise the sentence (with six alternatives), the

word the subject is currently examining (one of four words) and the
decision (undecided, happy or sad). The word location and current

sentence specify the hidden state (word) at the lower hierarchical level.
The lower level also includes a letter location state (one of four

quadrants) and two spatial transformations (horizontal and vertical
flip). The current word and letter location specify the outcome (letter or

visual object; cat, bird, seed or nothing). At both the higher (e.g.,
sentence) and lower (e.g., word) levels, the hidden locations also

specify a proprioceptive outcome in terms of higher (e.g., head) and
lower (e.g., eye) movements that sample the word and letter respec-

tively. Finally, the hidden decision state determines (e.g. auditory)
feedback with three possibilities; namely, nothing, right or wrong. The

decision state and feedback outcomes have been omitted from Fig. 5 for
clarity.

This setup defines the state space and mapping from hidden states to
outcomes encoded by the A parameters. Note that the likelihood

mapping involves interactions among hidden states; for example, one
has to know both the location being sampled and the word generating

outcomes before the letter is specified. These interactions are modelled
very simply by placing a one at the appropriate combination of hidden

states (and zeros elsewhere) in the row of A corresponding to the
outcome. Similarly, the D parameters specify the outcome in terms of

hidden states at the lower level in terms of (combinations of) hidden

factors at the higher level.
It is now necessary to specify the contingencies and transitions

among hidden states in terms of the B parameters. There is a separate B

matrix for every hidden factor and policy. In this example, these

Fig. 3. Belief propagation and intrinsic connectivity. This schematic features the correspondence between known canonical microcircuitry and the belief updates in Fig. 2. Left Panel:

a canonical microcircuit based on (Haeusler and Maass, 2007), where inhibitory cells have been omitted from the deep layers – because they have little interlaminar connectivity. The

numbers denote connection strengths (mean amplitude of PSPs measured at soma in mV) and connection probabilities (in parentheses) according to (Thomson and Bannister, 2003).

Right panel: the equivalent microcircuitry based upon the message passing scheme of the previous figure. Here, we have placed the outcome prediction errors in superficial layers to

accommodate the strong descending (inhibitory) connections from superficial to deep layers. This presupposes that descending (interlaminar) projections disinhibit Layer 5 pyramidal

cells that project to the medium spiny cells of the striatum (Arikuni and Kubota, 1986). The computational assignments in this figure should be compared with the equivalent scheme for

predictive coding in (Bastos et al., 2012). The key difference is that superficial excitatory (e.g., pyramidal) cells encode expectations of hidden states, as opposed to state prediction errors.

This is because the prediction error is encoded by their postsynaptic currents, as opposed to their depolarisation or firing rates (see main text). The white circles correspond to the

Bayesian model average of state expectations, which are the red balls in the previous figures (and the inset). Black arrows denote excitatory intrinsic connections, while red arrows are

inhibitory. Blue arrows denote bottom-up of ascending extrinsic connections, while green arrows are top-down or descending. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)
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matrices have a very simple form: on any given trial, policies cannot

change the sentence or word. This means the corresponding B matrices
are identity matrices. For hidden locations, the B matrices simply

encode a transition from the current location to the location specified

by the policy. Here the policies were again very simple; namely, where
one looks next (in a body and head centred frame of reference at the

first and second levels respectively). For simplicity, the preceding
actions that constitute each policy were the actions actually selected.

In more sophisticated setups, policies can include different sequences of
actions; however here, the number of policies and actions were the

same. This means we do not have to worry about the evidence the
different policies encoded by the variational free energy (as in the right

panel of Fig. 2). There were three policies or actions at the second level;
proceed to the next word or stop reading and make a categorical

decision of happy or sad; resulting in right or wrong feedback.
Finally, the prior preferences encoded in the C parameters rendered

all outcomes equally preferred, with the exception of being wrong,
which was set at . In other words, the subject thought they

were exp(4) ≈ 54 times less likely to be wrong than undecided or right.
This aversion to making mistakes ensures the subject does not solicit

feedback to resolve uncertainty about the category of the sentence. In
other words, the subject has to be relatively confident – after epistemic

foraging – about the underlying narrative before confirming any
inference with feedback. Prior beliefs about first level hidden states,

encoded in the D parameters, told the subject they would start at the
first quadrant of the first word, with an equal probability of all

sentences. Because all six sentences began with either flee or wait, the
prior probability over words was implicitly restricted to flee or wait,

with equal probabilities of horizontal flipping (because these priors do
not depend on the higher level). The horizontal flipping corresponds to

a spatial transformation, under which the meaning of the word is

invariant, much like a palindrome. Conversely, the subject had a strong
prior belief that there was no vertical flipping. This (low-level feature)

transformation can be regarded as presenting words in upper or lower

case. The prior over vertical flipping will become important later, when
we switch prior beliefs to make uppercase (vertically flipped) stimuli

the prior default to introduce violations of (feature) expectations.
A heuristic motivation for including hidden factors like horizontal

flipping appeals to the way that we factorise hidden causes of stimuli; in
other words, carve nature at its joints. The fact that we are capable of:

“raeding wrods with jubmled lettres” (Rayner et al., 2006),

suggests that horizontal flipping can be represented in a way that is
conditionally independent of grapheme content.

This completes our specification of the generative model. To
simulate reading, the equations in Fig. 2 were integrated using 16

iterations for each time point at each level. At the lowest level, an
iteration is assumed to take 16 ms, so that each epoch or transition is

about 256 ms.1 This is the approximate frequency of saccadic eye

movements (and indeed phonemic processing in auditory language
processing), meaning that the simulations covered a few seconds of

simulated time. The scheduling of updates in hierarchical models
presents an interesting issue. In principle, we could implement the

belief updating synchronously; enabling second level expectations to be
informed by first level expectations as they accumulate evidence.

Alternatively, we could wait until the first level convergences and

Fig. 4. Belief propagation and extrinsic connectivity. This schematic illustrates a putative mapping between expectations that are updated during belief updating and recurrent

interactions within the cortico-basal ganglia-thalamic loops. This figure is based upon the functional neuroanatomy described in (Jahanshahi et al., 2015), which assigns motor updates to

motor and premotor cortex projecting to the putamen; associative loops to prefrontal cortical projections to the caudate and limbic loops to projections to the ventral striatum. The

correspondence between the message passing implicit in belief propagation and the organisation of these loops is remarkable; even down to the level of the sign (excitatory or inhibitory)

of the neuronal connections. The striatum (caudate and putamen) and the subthalamic nucleus (STN) receive inputs from many cortical and subcortical areas. The internal segment of the

globus pallidus (GPi) constitutes the main output nucleus from the basal ganglia. The basal ganglia are not only connected to motor areas (motor cortex, supplementary motor cortex,

premotor cortex, cingulate motor area and frontal eye fields) but also have connections with associative cortical areas. The basal ganglia nuclei have topologically organized motor,

associative and limbic territories; the posterior putamen is engaged in sensorimotor function, while the anterior putamen (or caudate) and the ventral striatum are involved in associative

(cognitive) and limbic (motivation and emotion) functions (Jahanshahi et al., 2015).

1 This is roughly the amount of time taken per iteration on a personal computer − to

less than an order of magnitude.
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update higher levels asynchronously – so that the high-level waits until

the lower level sequence completes before updating and providing
(empirical) prior constraints for the initial state at the lower level. We

elected to illustrate the latter (asynchronous) updating, noting that

alternative (synchronous) schemes could be implemented and com-
pared to empirical neuronal responses. Asynchronous scheduling has

the advantage of computational simplicity, because it means each level
can be integrated or solved by the same routine (here,

spm_MDP_VB_X.m). This means that the sequence of posterior expec-
tations following convergence at one level can be passed as (probabil-

istic) outcomes to the next, while the outcomes from the highest level
enter as prior constraints on the initial states of the level below.

Furthermore, we will see below that the ensuing updates bear a marked
similarity to empirical (neurophysiological) responses.

Fig. 6 shows simulated behavioural responses during reading in
terms of eye movements (upper panel) over four transitions at the

second level, where each transition entails one or two saccades at the
first. In this exemplar simulation, the stimuli were generated at random

using the above generative model. Here, the subject read the first
sentence in lower case, apart from the second letter that was in upper

case (i.e. with a surprising vertical flipping). In this trial, the subject
looks at the first quadrant of the first word and sees a cat. She therefore

knows immediately that the first word is flee. She then turns to the
second word and sees nothing. To resolve uncertainty, she samples the

fourth quadrant and again finds nothing, which means this word must
be wait (because the second word of each sentence is either flee or wait –

and the current word cannot be flee because the cat cannot be next to

the bird). The next two saccades, on the subsequent word, confirm the

word feed (with the seed next to the seed sampled on the first saccade).
Finally, the subject turns to the final word and discovers seeds on the

second saccade. At this point, residual uncertainty about the sentence is

resolved and the subject makes a correct categorisation – a happy story.
The lower panel shows expected outcomes at the end of sampling each

word. The upper row shows the final beliefs about the words under
(correct) expectations about the sentence of the second level. This (first)

sentence was “flee, wait, feed and wait”.
The key thing to take from these results is that the agent can have

precise beliefs about letters without ever seeing them. For example, the
subject believes there is a bird in the second quadrant of the first word,

despite the fact she never looked there. This illustrates the fact that it is
not necessary to sample all the constituent letters to identify a word.

Conversely, there can be uncertainty about particular letters, even
though the subject is confident about the word. This is illustrated by the

expectations about the letters in the second word. These expectations
are consistent with wait but reflect a degree of uncertainty about the

vertical flip (i.e., lower case or upper case font). This uncertainty – and
resulting hesitancy in moving to the next word – reflects the subject’s

prior belief that letters are usually presented in lower case. However,
the actual stimuli were presented in a surprising way (with a vertical

flip) that causes the subject to spend an extra saccade on this word,
before moving to the next.

Fig. 7 shows the simulated electrophysiological responses associated
with the belief updating reported in Fig. 6. Expectations about the

hidden state at the higher (upper panel) and lower (middle panel) levels

Fig. 5. The generative model used to simulate reading. This graphical model shows the conditional dependencies of the generative model used in subsequent figures, using the same

format as Fig. 1. In this model there are two hierarchical levels with three hidden states at the second level and four at the first level (hidden states and outcomes pertaining to categorical

decisions and feedback have been omitted for clarity). The hidden states at the higher level correspond to the sentence or narrative – generating sequences of words at the first level – and

which word the agent is currently sampling (with six alternative sentences and four words respectively). These (higher level) hidden states combine to specify the word generated at the

first level (flee, feed or wait). The hidden states at the first level comprise the current word and which quadrant the agent is looking at. These hidden states combine to generate outcomes in

terms of letters or icons that would be sampled if the agent looked at a particular location in the current word. In addition, two further hidden states provide a local feature context by

flipping the locations vertically or horizontally. The vertical flip can be thought of in terms of font substitution (upper case versus lowercase), while the horizontal flip means a word is

invariant under changes to the order of the letters (c.f., palindromes that read the same backwards as forwards). In this example, flee means that a bird is next to a cat, feed means a bird is

next to some seeds and wait means seeds are above (or below) the bird. Notice that there are outcomes at both levels. At the higher level there is a (proprioceptive) outcome signalling the

word currently being sampled (e.g., head position), while at the lower level there are two outcome modalities. The first (exteroceptive) outcome corresponds to the observed letter and the

second (proprioceptive) outcome reports the letter location (e.g., direction of gaze in a head-centred frame of reference). Similarly, there are policies at both levels. The high-level policy

determines which word the agent is currently reading, while the lower level dictates the transitions among the quadrants containing letters.
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are presented in raster format. The horizontal axis is time over the

entire trial, where each iteration corresponds roughly to 16 ms and the
trial lasted for three and half seconds. The vertical axis corresponds to

the Bayesian model averages or expectations about the six sentences at
the higher level and the three words at the lower level. Under the

scheduling used in these simulations, higher level expectations wait
until lower-level updates have terminated and, reciprocally, lower-level

updates are suspended until belief updating in the higher level has been
completed. This means the expectations are sustained at the higher

level, while the lower level gathers information. The resulting patterns
of firing rate over time show a marked resemblance to pre-saccadic

delay period activity in the prefrontal cortex. The insert on the upper
right is based upon the empirical results reported in (Funahashi, 2014)

and tie in nicely with the putative role of matrix thalamocortical
projections during delay period activity (Cruikshank et al., 2012). Note

that the expectations are reset at the beginning of each epoch,
producing the transients in the lower panel on the left. These fluctua-

tions are the firing rate in the upper panels filtered between 4 Hz and
32 Hz and can be regarded as (band pass filtered) changes in simulated

depolarisation. These simulated local field potentials are again remark-

ably similar to empirical responses. The examples shown in the lower
right inset are based on the study of perisaccadic electrophysiological

responses in early and inferotemporal cortex during active vision
reported in (Purpura et al., 2003).

4.1. Summary

In the previous section, we highlighted the biological plausibility of
belief updating based upon deep temporal models. In this section, the

biological plausibility is further endorsed in terms of canonical
electrophysiological phenomena such as perisaccadic delay period

firing activity and local field potentials. Furthermore, these simulations
have a high degree of face validity in terms of saccadic eye movements

during reading (Rayner, 1978, 2009). In the final section, we focus on
the electrophysiological correlates and try to reproduce classical event

related potential phenomena such as the mismatch negativity and other
responses to violation.

5. Simulations of classical violation responses

Fig. 8 shows simulated electrophysiological correlates of perisacca-

dic responses after the last saccade prior to the decision epoch, when
the subject declared her choice (in this case happy). To characterise

responses to violations of local and global expectations, we repeated the
simulations using exactly the same stimuli and actions but under

different prior beliefs. Our hope here was to reproduce the classical
mismatch negativity (MMN) response to unexpected (local) stimulus

features (Strauss et al., 2015) – and a subsequent P300 (or N400)
response to semantic (global) violations (Donchin and Coles, 1988).

These distinct violation responses are important correlates of atten-
tional processing and, clinically, conscious level and psychopathology

(Morlet and Fischer, 2014; Light et al., 2015).

To simulate local (word or lexical) violations, we reversed the prior
expectation of an upper case by switching the priors on the vertical flip

for, and only for the last word. This produced greater excursions in the
dynamics of belief updating. These can be seen as slight differences

between the normal response (dotted lines) and response under local
violations (solid lines) in the upper left panel of Fig. 8. The lower-level

(lexical) expectations are shown in blue, while high-level (contextual)
expectations are shown in red. Belief updating at the lower-level

produces a fluctuation at around 100 ms known as an N1 response in
ERP research. In contrast to these early (a.k.a. exogenous) responses,

later (a.k.a. endogenous) responses appear to be dominated by expecta-
tions at the higher level. The difference waveforms (with and without

surprising stimulus features) are shown on the upper right panel and
look remarkably like a classical mismatch negativity. Note that the

mismatch negativity peaks at about 170 ms and slightly postdates the
N1. Again, this is exactly what is observed empirically; leading to

debates about whether the generators of the N1 and MMM are the same
or different. These simulations offer a definitive answer: the generators

(neuronal encoding of expectations) are exactly the same; however,
evidence accumulation is slightly slower when expectations are vio-

lated – leading to a protracted difference waveform.
To emulate global violations, we decreased the prior probability of

the inferred (first) sentence by a factor of eight. This global (semantic)
violation rendered the sampled word relatively surprising, producing a

difference waveform with more protracted dynamics. Again, this is
remarkably similar to empirical P300 responses seen with contextual

violations. It is well known that the amplitude of the P300 component is
inversely related to the probability of stimuli (Donchin and Coles,

1988). The anterior P3a is generally evoked by stimuli that deviate
from expectations. Indeed, novel stimuli generate a higher-amplitude

P3a component than deviant but repeated stimuli. The P3b is a late
positive component with a parietal (posterior) distribution seen in

oddball paradigms and is thought to represent a context-updating

operation (Donchin and Coles, 1988; Morlet and Fischer, 2014). Here,
this context is operationalised in terms of changes in (sentence) context,

under which lexical features are accumulated.
Finally, we combined the local and global priors to examine the

interaction between local and global violations in terms of the
difference of difference waveforms. The results are shown on the lower

Fig. 6. Simulated behavioural responses during reading: upper panel. This shows the

trajectory of eye movements over four transitions at the second level that entail one or

two saccadic eye movements at the first. In this trial, the subject looks at the first

quadrant of the first word and sees a cat. She therefore knows immediately that the first

word is flee. She then turns to the first quadrant of the second word and sees nothing. To

resolve uncertainty she then looks at the fourth quadrant and again finds nothing, which

means this word must be wait (because the second word of each sentence is either flee or

wait – and the current word cannot be flee because the cat cannot be next to the bird). The

next two saccades, on the subsequent word confirm the word feed (with the seed next to

the bird sampled on the first saccade). Finally, the subject turns to the final word and

discloses seeds after the second saccade. At this point, uncertainty about the sentence

(sentence one versus sentence four) is resolved and the subject makes a correct

categorisation – a happy story. Lower panel: this panel shows expected outcomes at

the end of sampling each word. The upper row shows the final beliefs about the words

under (correct) expectations about the sentence at the second level. This (first) sentence

was “flee, wait, feed and wait”. At the first level, expectations about the letters under

posterior beliefs about the words are shown in terms of mixtures of icons.
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right and suggest that the effect of a global violation on the effects of a

local violation (and vice versa) look similar to the mismatch negativity.
This means, that the effect of a local violation on a global violation is

manifest as an increase in the amplitude of mismatch negativity and the
positive P300 differences. Interestingly, this interaction appears to be

restricted to low (lexical) representations. This suggests that, empiri-
cally, a late peak P300 like response to global violations may appear to

be generated by sources normally associated with mismatch negativity
(e.g., a shift to more anterior sources of the sort that define the P3a).

5.1. Summary

The opportunity to simulate these classical waveforms rests upon
having a computationally and neurophysiologically plausible process

theory that accommodates notions of violations and expectations.
Happily, this is exactly the sort of framework offered by active

inference. The MMN and P300 are particularly interesting from the
point of view of clinical research and computational psychiatry

(Montague et al., 2012). Indeed, their use in schizophrenia research

(Umbricht and Krljes, 2005; Wang et al., 2014; Wang and Krystal, 2014;
Light et al., 2015) was a partial motivation for the work reported in this

paper.

6. Discussion

This paper has introduced the form and variational inversion of
deep (hierarchical) temporal models for discrete (Markovian) hidden

states and outcomes. This form of modelling has been important in
machine learning; e.g. (Nefian et al., 2002; George and Hawkins, 2009),

with a special focus on hierarchical or deep architectures

(Salakhutdinov et al., 2013; Zorzi et al., 2013; Testolin and Zorzi,
2016). The technical contribution of this work is a formal treatment of

discrete time in a hierarchical (nested or deep) setting and a simple set
of belief update rules that follow from minimising variational free

energy. Furthermore, this minimisation is contextualised within active
inference to generate purposeful (epistemic and pragmatic) behaviour

Fig. 7. Simulated electrophysiological responses during reading: these panels show the Bayesian belief updating that underlies the behaviour and expectations reported in the

previous figure. Expectations about the initial hidden state (at the first time step) at the higher (upper panel A) and lower (middle panel B) hierarchical levels are presented in raster

format, where an expectation of one corresponds to black (i.e., the firing rate activity corresponds to image intensity). The horizontal axis is time over the entire trial, where each iteration

corresponds roughly to 16 ms. The vertical axis corresponds to the six sentences at the higher level and the three words at the lower level. The resulting patterns of firing rate over time

show a marked resemblance to delay period activity in the prefrontal cortex prior to saccades. Saccade onsets are shown with the vertical (cyan) lines. The inset on the upper right is based

upon the empirical results reported in (Funahashi, 2014). The transients in the lower panel (C) are the firing rates in the upper panels filtered between 4 Hz and 32 Hz – and can be

regarded as (band pass filtered) fluctuations in depolarisation. These simulated local field potentials are again remarkably similar to empirical responses. The examples shown in the inset

are based on the study of perisaccadic electrophysiological responses during activation reported in (Purpura et al., 2003). The upper traces come from early visual cortex (V2), while the

lower traces come from inferotemporal cortex (TE). These can be thought of as first and second level empirical responses respectively. The lower panel (D) reproduces the eye movement

trajectories of the previous figure. The simulated electrophysiological responses highlighted in cyan are characterised in more detail in the next figure.
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based on planning as inference (Botvinick and Toussaint, 2012).
The inference scheme presented here takes a potentially important

step in explaining hierarchical temporal behaviour and how it may be
orchestrated by the brain. There are a number of directions in which the

scope of hierarchical schemes of the sort could be expanded. Firstly, to

fully capture the dynamic character of language comprehension and
production, means one has to handle systems of compositional recur-

sive rules (Fodor and Pylyshyn, 1988; Pinker and Ullman, 2002), that
underlie language grammars (Chomsky, 2006). This is likely to require

deeper generative models that may entail some structure learning or

Fig. 8. Simulated electrophysiological responses to violations: these simulated electrophysiological correlates focus on the perisaccadic responses around the last saccade prior to the

final epoch, i.e. the cyan region highlighted in Fig. 7. The blue lines report the (filtered) expectations over peristimulus time at the first level (with one line for each of the three words),

while the red lines show the evolution of expectations at the second level (with one line for each of the six sentences). Here, we repeated the simulations using the same stimuli and

actions but under different prior beliefs. First, we reversed the prior expectation of a lower case by switching the informative priors on the vertical flip for, and only for, the last word. This

means that the stimuli violated local expectations, producing slightly greater excursions in the dynamics of belief updating. These can be seen in slight differences between the normal\

standard response (dotted line) and the response to the surprising letter (solid lines) in the upper left panel. The ensuing difference waveform is shown on the upper right panel and looks

remarkably like the classical mismatch negativity. Second, we made the inferred sentence surprising by decreasing its prior probability by a factor of eight. This global violation rendered

the sampled word relatively surprising, producing a difference waveform with more protracted dynamics. Again, this is remarkably similar to empirical P300 responses seen with global

violations. Finally, we combined the local and global priors to examine the interaction between local and global violations in terms of the difference in difference waveforms (these are not

the differences in the difference waveforms above, which are referenced to the same normal response). The results are shown on the lower right and suggest that the effect of a global

violation on the effects of a local violation (and vice versa) is largely restricted to early responses. The insert illustrates empirical event related potentials to unexpected stimuli elicited in

patients with altered levels of consciousness to illustrate the form of empirical MMN and P300 responses (Fischer et al., 2000). (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)
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nonparametric Bayesian methods (MacKay and Peto, 1995; Goldwater,
2006; Gershman and Niv, 2010; Collins and Frank, 2013). Secondly,

there are subtle aspects to processing of serial order that have been
identified and modelled (Page and Norris, 1998; Burgess and Hitch,

1999; Brown et al., 2000; Botvinick and Plaut, 2006). For example,
without additional mechanisms, associative chaining models – in which

chains are constructed with one-to-one dependencies between items –

have difficulty modelling repetition (Lashley, 1951). This is because

dependencies from an item typically change when it is repeated,
requiring context dependent mechanisms to be added. The types-tokens

framework (Kanwisher, 1987; Bowman and Wyble, 2007) may be a
particularly useful way to handle repetition. In addition to repetitions,

error patterns in serial order recall seem inconsistent with a vanilla
associative chaining model (Henson, 1998; Page and Norris, 1998). In

further work on the deep temporal model presented here, we will
explore extensions that enable language grammars and classic serial

order recall data to be simulated.
From a neurobiological perspective, the belief updating appears to

be sufficiently simple to be biologically plausible; resting on simple
operators such as softmax functions, logarithmic transforms and linear

algebra (that can be implemented using firing rate functions, nonlinear
postsynaptic responses and neuronal connectivity respectively).

Furthermore, the intrinsic and extrinsic connectivity required by the
belief propagation appears to map gracefully to intrinsic and extrinsic

connectivity within canonical microcircuits – and in the cortical-basal
ganglia-thalamic loops responsible for action selection in the brain. The

computational architecture that emerges from applying standard
(variational) Bayesian belief updating to hierarchical models relates

observable neuronal dynamics to underlying computational processes;
an approach that might be applicable to temporally structured neuro-

physiological responses across different measurements and cognitive
domains (Dehaene-Lambertz et al., 2006; Hasson et al., 2008; Cocchi

et al., 2016). Finally, the biological plausibility of the resulting scheme
acquires a predictive validity; in the sense that it reproduces some

specific violation responses studied in state-of-the-art cognitive neu-
roscience (Strauss et al., 2015; Uhrig et al., 2016).

7. Software note

Although the generative model – specified by the (A,B,C,D)
matrices – changes from application to application, the belief updates

in Fig. 2 are generic and can be implemented using standard routines
(here spm_MDP_VB_X.m). These routines are available as Matlab code

in the SPM academic software: http://www.fil.ion.ucl.ac.uk/spm/. The
simulations in this paper can be reproduced (and customised) via a

graphical user interface: by typing DEM and selecting the reading

demo.
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Appendix A

These appendices are provided for readers who are interested in technical details. In particular, they provide the derivations behind the (Matlab)

implementation of active inference for Markov decision processes used to illustrate reading in this paper. A more detailed description of the update

schemes can be found in the annotated (Matlab) routines that are freely available as academic software.

Appendix A1

Belief updating: Bayesian inference is equivalent to maximising the marginal likelihood – or minimising variational free energy – with respect to
beliefs (here, expectations) about hidden or latent variables. Free energy is essentially the difference between complexity and accuracy. The free

energy for the generative model in Fig. 1 can be expressed as follows (ignoring constants):
The (marginal) free energy of N hidden factors at the i-th level, under the π-th policy, is given by its path integral (see Appendix A2)

Eq. (A.2) expresses free energy as an expected prediction error, where the prediction error is the log expectation of the hidden state minus the
prediction from its Markov blanket; namely, the previous state, the next state and other factors at the current time (i.e., parents of the current

outcome). For the first hidden state, the prediction from the previous state is replaced by the prediction from the hierarchical level above;
. For simplicity, we have omitted the time subscript for expected states at the higher level and have assumed a single outcome

modality and a single higher-level factor.
The expected free energy of a policy (see Appendix A3) has the same form as (A.2), now allowing for M multiple outcome modalities:

The updates for expectations of hidden states can now be formulated as a gradient descent on free energy, while policy expectations minimises
free energy explicitly (ignoring constants):Here, denotes the expected initial state in the lower level during epoch τ at the higher level. Note

that the prediction error is simply the free energy gradient with respect to each hidden state. This means that optimising free energy through a
gradient descent corresponds to destroying free energy gradients (Tschacher and Haken, 2007).

Appendix A2

Marginal free energy lemma: the variational free energy in (A.2) has been formulated a slightly unusual way to finesse the overconfidence problem

that attends mean field approximations. Minimising this marginal free energy, with respect to the approximate posterior, yields the true posterior by
the following lemma:

Lemma (marginal free energy): under a mean field approximation Q(s) = ∏iQ
(i), the marginal free energy F(i) is minimised when the approximate

posteriors becomes the true marginal posteriors, at which point (negative) free energy becomes log evidence:

Proof. when the approximate posterior is equal to the true posterior, marginalisation over the Markov blanket of any hidden state returns its true

posterior and the divergence attains its minimum of zero
This means the free energy reduces to the log evidence□

Remarks. to finesse the problem that we do not have an explicit joint posterior over the Markov blanket, one can replace the complexity based upon
the joint posterior with the sum of complexities based upon the marginal posteriors − based upon the assumption that they share the same

minimum.
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In practice, this appears to offer robust convergence. This leads to the marginal free energy in (A.3) in which the complexity can be separated into
prior constraints from the parents and children of states at any point in time (that can be construed of in terms of a forward and backwards

complexity).

Appendix A3

Expected free energy: variational free energy is a functional of a distribution over states, given observed outcomes. We can express this as a
function of the sufficient statistics of the posterior:

F(s) = EQ(s|s)[lnQ(s|s) − lnP(o, s)] (A.8)

In contrast, the expected free energy is the average over (unobserved) outcomes, given some policy that determines the distribution over states.

This can be expressed as a function of the policy:
The expected free energy is therefore just the expected entropy or uncertainty about outcomes under a particular policy. Things get more

interesting if we express the generative model-terms of a prior over outcomes that does not depend upon the policy
In this setting, the expected uncertainty or ambiguity is supplemented with a risk that scores the difference between the prior (preferred)

outcomes and outcomes under a particular policy. This is the form used in active inference, where all the probabilities in (A.10) are conditioned upon
past observations. This enables one to replace the posterior in (A.10) with the approximate posterior that minimises variational free energy based on

(observed) outcomes in the past.
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