935 research outputs found

    Noncommutative QCD, first-order-in-theta-deformed instantons and 't Hooft vertices

    Full text link
    For commutative Euclidean time, we study the existence of field configurations that {\it a)} are formal power series expansions in h\theta^{\m\n}, {\it b)} go to ordinary (anti-)instantons as h\theta^{\m\n}\to 0, and {\it c)} render stationary the classical action of Euclidean noncommutative SU(3) Yang-Mills theory. We show that the noncommutative (anti-)self-duality equations have no solutions of this type at any order in h\theta^{\m\n}. However, we obtain all the deformations --called first-order-in-θ\theta-deformed instantons-- of the ordinary instanton that, at first order in h\theta^{\m\n}, satisfy the equations of motion of Euclidean noncommutative SU(3) Yang-Mills theory. We analyze the quantum effects that these field configurations give rise to in noncommutative SU(3) with one, two and three nearly massless flavours and compute the corresponding 't Hooft vertices, also, at first order in h\theta^{\m\n}. Other issues analyzed in this paper are the existence at higher orders in h\theta^{\m\n} of topologically nontrivial solutions of the type mentioned above and the classification of the classical vacua of noncommutative SU(N) Yang-Mills theory that are power series in h\theta^{\m\n}.Comment: Latex. Some macros. No figures. 42 pages. Typos correcte

    A vitamin D, calcium and leucine-enriched whey protein nutritional supplement improves measures of bone health in sarcopenic non-malnourished older adults: The PROVIDE study

    Get PDF
    Alterations in musculoskeletal health with advanced age contribute to sarcopenia and decline in bone mineral density (BMD) and bone strength. This decline may be modifiable via dietary supplementation. To test the hypothesis that a specific oral nutritional supplement can result in improvements in measures of bone health. Participants (n 380) were participants of the PROVIDE study, a 13-week, multicenter, randomized, controlled, double-blind, 2 parallel-group study among non-malnourished older participants (≥ 65 years) with sarcopenia [determined by Short Physical Performance Battery (SPPB; 0-12) scores between 4 and 9, and a low skeletal muscle mass index (SMI; skeletal muscle mass/BW × 100) ≤ 37% in men and ≤ 28% in women using bioelectric impedance analysis] Supplementation of a vitamin D, calcium and leucine-enriched whey protein drink that comprises a full range of micronutrients (active; 2/day) was compared with an iso-caloric control. Serum 25-hydroxyvitamin D [25(OH)D], parathyroid hormone (PTH), biochemical markers of bone formation (osteocalcin; OC, procollagen type 1 amino-terminal propeptide; P1NP) and resorption (carboxy-terminal collagen crosslinks; CTX), insulin like growth factor 1 (IGF-1) and total-body BMD were analysed pre- and post-intervention. Serum 25(OH)D concentrations increased from 51.1 ± 22.9 nmol/L (mean ± SD) to 78.9 ± 21.1 nmol/L in the active group (p < 0.001 vs. control). Serum PTH showed a significant treatment difference (p < 0.001) with a decline in the active group, and increase in the control group. Serum IGF-1 increased in the active group (p < 0.001 vs. control). Serum CTX showed a greater decline in the active group (p = 0.001 vs. control). There were no significant differences in serum OC or P1NP between groups during the intervention. Total body BMD showed a small (0.02 g/cm2; ~ 2%) but significant increase in the active group after supplementation (p = 0.033 vs. control). Consuming a vitamin D, calcium and leucine-enriched whey protein supplement for 13 weeks improved 25(OH)D, suppressed PTH and had small but positive effects on BMD, indicative of improved bone health, in sarcopenic non-malnourished older adults

    Black Hole Growth Is Mainly Linked to Host-galaxy Stellar Mass Rather Than Star Formation Rate

    Get PDF
    We investigate the dependence of black-hole accretion rate (BHAR) on host-galaxy star formation rate (SFR) and stellar mass (M∗) in the CANDELS/GOODS-South field in the redshift range of 0.5≤z<2.0. Our sample consists of ≈18000 galaxies, allowing us to probe galaxies with 0.1≲SFR≲100 M⊙ yr−1 and/or 108≲M∗≲1011 M⊙. We use sample-mean BHAR to approximate long-term average BHAR. Our sample-mean BHARs are derived from the Chandra Deep Field-South 7 Ms observations, while the SFRs and M∗ have been estimated by the CANDELS team through SED fitting. The average BHAR is correlated positively with both SFR and M∗, and the BHAR-SFR and BHAR-M∗ relations can both be described acceptably by linear models with a slope of unity. However, BHAR appears to be correlated more strongly with M∗ than SFR. This result indicates that M∗ is the primary host-galaxy property related to black-hole growth, and the apparent BHAR-SFR relation is largely a secondary effect due to the star-forming main sequence. Among our sources, massive galaxies (M∗≳1010M⊙) have significantly higher BHAR/SFR ratios than less-massive galaxies, indicating the former have higher black-hole fueling efficiency and/or higher SMBH occupation fraction than the latter. Our results can naturally explain the observed proportionality between MBH and M∗ for local giant ellipticals, and suggest their MBH/M∗ is higher than that of local star-forming galaxies. Among local star-forming galaxies, massive systems might have higher MBH/M∗ compared to dwarfs

    The NuSTAR Serendipitous Survey: Hunting for the Most Extreme Obscured AGN at >10 keV

    Get PDF
    We identify sources with extremely hard X-ray spectra (i.e., with photon indices of Γ0.6{\rm{\Gamma }}\lesssim 0.6) in the 13 deg2 NuSTAR serendipitous survey, to search for the most highly obscured active galactic nuclei (AGNs) detected at >10keV\gt 10\,\mathrm{keV}. Eight extreme NuSTAR sources are identified, and we use the NuSTAR data in combination with lower-energy X-ray observations (from Chandra, Swift XRT, and XMM-Newton) to characterize the broadband (0.5–24 keV) X-ray spectra. We find that all of the extreme sources are highly obscured AGNs, including three robust Compton-thick (CT; NH>1.5×1024{N}_{{\rm{H}}}\gt 1.5\times {10}^{24} cm−2) AGNs at low redshift (z<0.1z\lt 0.1) and a likely CT AGN at higher redshift (z = 0.16). Most of the extreme sources would not have been identified as highly obscured based on the low-energy (<10\lt 10 keV) X-ray coverage alone. The multiwavelength properties (e.g., optical spectra and X-ray–mid-IR luminosity ratios) provide further support for the eight sources being significantly obscured. Correcting for absorption, the intrinsic rest-frame 10–40 keV luminosities of the extreme sources cover a broad range, from 5×1042\approx 5\times {10}^{42} to 1045 erg s−1. The estimated number counts of CT AGNs in the NuSTAR serendipitous survey are in broad agreement with model expectations based on previous X-ray surveys, except for the lowest redshifts (z<0.07z\lt 0.07), where we measure a high CT fraction of fCTobs=3012+16%{f}_{\mathrm{CT}}^{\mathrm{obs}}={30}_{-12}^{+16} \% . For the small sample of CT AGNs, we find a high fraction of galaxy major mergers (50% ± 33%) compared to control samples of "normal" AGNs

    Constraints on Dark Matter Annihilation in Clusters of Galaxies with the Fermi Large Area Telescope

    Full text link
    Nearby clusters and groups of galaxies are potentially bright sources of high-energy gamma-ray emission resulting from the pair-annihilation of dark matter particles. However, no significant gamma-ray emission has been detected so far from clusters in the first 11 months of observations with the Fermi Large Area Telescope. We interpret this non-detection in terms of constraints on dark matter particle properties. In particular for leptonic annihilation final states and particle masses greater than ~200 GeV, gamma-ray emission from inverse Compton scattering of CMB photons is expected to dominate the dark matter annihilation signal from clusters, and our gamma-ray limits exclude large regions of the parameter space that would give a good fit to the recent anomalous Pamela and Fermi-LAT electron-positron measurements. We also present constraints on the annihilation of more standard dark matter candidates, such as the lightest neutralino of supersymmetric models. The constraints are particularly strong when including the fact that clusters are known to contain substructure at least on galaxy scales, increasing the expected gamma-ray flux by a factor of ~5 over a smooth-halo assumption. We also explore the effect of uncertainties in cluster dark matter density profiles, finding a systematic uncertainty in the constraints of roughly a factor of two, but similar overall conclusions. In this work, we focus on deriving limits on dark matter models; a more general consideration of the Fermi-LAT data on clusters and clusters as gamma-ray sources is forthcoming.Comment: accepted to JCAP, Corresponding authors: T.E. Jeltema and S. Profumo, minor revisions to be consistent with accepted versio

    Measurement of the Charged Multiplicities in b, c and Light Quark Events from Z0 Decays

    Full text link
    Average charged multiplicities have been measured separately in bb, cc and light quark (u,d,su,d,s) events from Z0Z^0 decays measured in the SLD experiment. Impact parameters of charged tracks were used to select enriched samples of bb and light quark events, and reconstructed charmed mesons were used to select cc quark events. We measured the charged multiplicities: nˉuds=20.21±0.10(stat.)±0.22(syst.)\bar{n}_{uds} = 20.21 \pm 0.10 (\rm{stat.})\pm 0.22(\rm{syst.}), nˉc=21.28±0.46(stat.)0.36+0.41(syst.)\bar{n}_{c} = 21.28 \pm 0.46(\rm{stat.}) ^{+0.41}_{-0.36}(\rm{syst.}) nˉb=23.14±0.10(stat.)0.37+0.38(syst.)\bar{n}_{b} = 23.14 \pm 0.10(\rm{stat.}) ^{+0.38}_{-0.37}(\rm{syst.}), from which we derived the differences between the total average charged multiplicities of cc or bb quark events and light quark events: Δnˉc=1.07±0.47(stat.)0.30+0.36(syst.)\Delta \bar{n}_c = 1.07 \pm 0.47(\rm{stat.})^{+0.36}_{-0.30}(\rm{syst.}) and Δnˉb=2.93±0.14(stat.)0.29+0.30(syst.)\Delta \bar{n}_b = 2.93 \pm 0.14(\rm{stat.})^{+0.30}_{-0.29}(\rm{syst.}). We compared these measurements with those at lower center-of-mass energies and with perturbative QCD predictions. These combined results are in agreement with the QCD expectations and disfavor the hypothesis of flavor-independent fragmentation.Comment: 19 pages LaTex, 4 EPS figures, to appear in Physics Letters

    Observation of hard scattering in photoproduction events with a large rapidity gap at HERA

    Get PDF
    Events with a large rapidity gap and total transverse energy greater than 5 GeV have been observed in quasi-real photoproduction at HERA with the ZEUS detector. The distribution of these events as a function of the γp\gamma p centre of mass energy is consistent with diffractive scattering. For total transverse energies above 12 GeV, the hadronic final states show predominantly a two-jet structure with each jet having a transverse energy greater than 4 GeV. For the two-jet events, little energy flow is found outside the jets. This observation is consistent with the hard scattering of a quasi-real photon with a colourless object in the proton.Comment: 19 pages, latex, 4 figures appended as uuencoded fil

    Search for the standard model Higgs boson in tau final states

    Get PDF
    We present a search for the standard model Higgs boson using hadronically decaying tau leptons, in 1 inverse femtobarn of data collected with the D0 detector at the Fermilab Tevatron ppbar collider. We select two final states: tau plus missing transverse energy and b jets, and tau+ tau- plus jets. These final states are sensitive to a combination of associated W/Z boson plus Higgs boson, vector boson fusion and gluon-gluon fusion production processes. The observed ratio of the combined limit on the Higgs production cross section at the 95% C.L. to the standard model expectation is 29 for a Higgs boson mass of 115 GeV.Comment: publication versio
    corecore