23 research outputs found

    Data driven flavour model

    Get PDF
    A bottom-up approach has been adopted to identify a flavour model that agrees with present experimental measurements. The charged fermion mass hierarchies suggest that only the top Yukawa term should be present at the renormalisable level. Similarly, describing the lightness of the active neutrinos through the type-I Seesaw mechanism, right-handed neutrino mass terms should also be present at the renormalisable level. The flavour symmetry of the Lagrangian including the fermionic kinetic terms and only the top Yukawa is then a combination of U(2) and U(3) factors. Once considering the Majorana neutrino terms, the associated symmetry is O(3). Lighter charged fermion and active neutrino masses and quark and lepton mixings arise considering specific spurion fields à la Minimal Flavour Violation. The associated phenomenology is investigated and the model turns out to have almost the same flavour protection as the Minimal Flavour Violation in both quark and lepton sectors. Promoting the spurions to dynamical fields, the associated scalar potential is also studied and a minimum is identified such that fermion masses and mixings are correctly reproduced. Very precise predictions for the Majorana phases follow from the minimisation of the scalar potential and thus the neutrinoless-double-beta decay may represent a smoking gun for the model

    Entropy and canonical ensemble of hybrid quantum classical systems

    Get PDF
    In this work we generalize and combine Gibbs and von Neumann approaches to build, for the first time, a rigorous definition of entropy for hybrid quantum-classical systems. The resulting function coincides with the two cases above when the suitable limits are considered. Then, we apply the MaxEnt principle for this hybrid entropy function and obtain the natural candidate for the hybrid canonical ensemble (HCE). We prove that the suitable classical and quantum limits of the HCE coincide with the usual classical and quantum canonical ensembles since the whole scheme admits both limits, thus showing that the MaxEnt principle is applicable and consistent for hybrid systems

    Data Driven Flavour Model

    Get PDF
    A bottom-up approach has been adopted to identify a flavour model that agrees with present experimental measurements. The charged fermion mass hierarchies suggest that only the top Yukawa term should be present at the renormalisable level. Similarly, describing the lightness of the active neutrinos through the type-I Seesaw mechanism, right-handed neutrino mass terms should also be present at the renormalisable level. The flavour symmetry of the Lagrangian including the fermionic kinetic terms and only the top Yukawa is then a combination of U(2)U(2) and U(3)U(3) factors. Once considering the Majorana neutrino terms, the associated symmetry is O(3)O(3). Lighter charged fermion and active neutrino masses and quark and lepton mixings arise considering specific spurion fields {\it \`a la} Minimal Flavour Violation. The associated phenomenology is investigated and the model turns out to have almost the same flavour protection as the Minimal Flavour Violation in both quark and lepton sectors. Promoting the spurions to dynamical fields, the associated scalar potential is also studied and a minimum is identified such that fermion masses and mixings are correctly reproduced. Very precise predictions for the Majorana phases follow from the minimisation of the scalar potential and thus the neutrinoless-double-beta decay may represent a smoking gun for the model.Comment: 39 pages, 6 figures. Accepted for publication in EPJ

    Hybrid Koopman C*-formalism and the hybrid quantum-classical master equation

    Get PDF
    Based on Koopman formalism for classical statistical mechanics, we propose a formalism to define hybrid quantum-classical dynamical systems by defining (outer) automorphisms of the C*-algebra of hybrid operators and realizing them as linear transformations on the space of hybrid states. These hybrid states are represented as density matrices on the Hilbert space obtained from the hybrid C*-algebra by the GNS theorem. We also classify all possible dynamical systems which are unitary and obtain the possible hybrid Hamiltonian operators.Comment: 20 page

    A sufficient condition for confinement in QCD

    Full text link
    This letter is about confinement in QCD. At the moment we have pictures of confinement to complete our understanding of the physics of strongly interacting particles, interaction which asks for confinement.As it is said in [1] : " In principle it should be possible to derive the confinement hypothesis from the QCD Lagrangian. At this time, no rigorous derivation exists, so it is not absolutely clear that the confinement hypothesis is a bone fide prediction of QCD" . In this letter we show that a sufficient (of course not necessary) condition for confinement is that topological structure of vacuum in Nature does not correspond to the θ\theta-vacuum. Therefore, if different vacua with nontrivial winding number cannot be connected by tunneling, we obtain confinement as a consequence.Comment: 10 page

    Effective nonlinear Ehrenfest hybrid quantum-classical dynamics

    Get PDF
    The definition of a consistent evolution equation for statistical hybrid quantum-classical systems is still an open problem. In this paper we analyze the case of Ehrenfest dynamics on systems defined by a probability density and identify the relations of the non-linearity of the dynamics with the obstructions to define a consistent dynamics for the first quantum moment of the distribution. This first quantum moment represents the physical states as a family of classically-parametrized density matrices ρ^(ξ)\hat \rho(\xi), for ξ\xi a classical point; and it is the most common representation of hybrid systems in the literature. Due to this obstruction, we consider higher order quantum moments, and argue that only a finite number of them are physically measurable. Because of this, we propose an effective solution for the hybrid dynamics problem based on approximating the distribution by those moments and representing the states by them.Comment: 21 pages. Minor correction in the list of affiliation

    Entropy and canonical ensemble of hybrid quantum classical systems

    Get PDF
    We generalize von Neumann entropy function to hybrid quantum-classical systems by considering the principle of exclusivity of hybrid events. For non-interacting quantum and classical subsystems, this entropy function separates into the sum of the usual classical (Gibbs) and quantum (von Neumann) entropies, whereas if the two parts do interact, it can be properly separated into the classical entropy for the marginal classical probability, and the conditional quantum entropy. We also deduce the hybrid canonical ensemble (HCE) as the one that maximizes this entropy function, for a fixed ensemble energy average. We prove that the HCE is additive for non-interacting systems for all thermodynamic magnitudes, and reproduces the appropriate classical- and quantum-limit ensembles. Furthermore, we discuss how and why Ehrenfest dynamics does not preserve the HCE and does not yield the correct ensemble averages when time-averages of simulations are considered -- even if it can still be used to obtain correct averages by modifying the averaging procedure.Comment: 6 pages + 4 pages Supp. Ma

    About the computation of finite temperature ensemble averages of hybrid quantum-classical systems with molecular dynamics

    Get PDF
    Molecular or condensed matter systems are often well approximated by hybrid quantum-classical models: the electrons retain their quantum character, whereas the ions are considered to be classical particles. We discuss various alternative approaches for the computation of equilibrium (canonical) ensemble averages for observables of these hybrid quantum-classical systems through the use of molecular dynamics (MD)-i.e. by performing dynamics in the presence of a thermostat and computing time-averages over the trajectories. Often, in classical or ab initio MD, the temperature of the electrons is ignored and they are assumed to remain at the instantaneous ground state given by each ionic configuration during the evolution. Here, however, we discuss the general case that considers both classical and quantum subsystems at finite temperature canonical equilibrium. Inspired by a recent formal derivation for the canonical ensemble for quantum classical hybrids, we discuss previous approaches found in the literature, and provide some new formulas

    LAT-1 and GLUT-1 Carrier Expression and Its Prognostic Value in Gastroenteropancreatic Neuroendocrine Tumors

    Get PDF
    Cancer cells develop mechanisms that increase nutrient uptake, including key nutrient carriers, such as amino acid transporter 1 (LAT-1) and glucose transporter 1 (GLUT-1), regulated by the oxygen-sensing Von Hippel Lindau-hypoxia-inducible factor (VHL-HIF) transcriptional pathway. We aimed to analyze these metabolic players in gastroenteropancreatic neuroendocrine tumors (GEP-NET) and correlate them with tumor malignancy and progression. LAT-1, GLUT-1, and pVHL expression was analyzed in 116 GEP-NETs and 48 peritumoral tissue samples by immunohistochemistry. LAT-1 was stably silenced using specific shRNA in the human NET BON cell line. LAT-1 expression was significantly increased in tumor tissue compared to non-tumor tissue in both gastrointestinal (67% vs. 44%) and pancreatic NETs (54% vs. 31%). Similarly, GLUT-1 was substantially elevated in gastrointestinal (74% vs. 19%) and pancreatic (58% vs. 4%) NETs. In contrast, pVHL expression was decreased (85% vs. 58%) in pancreatic NETs. Tumors with metastases at diagnosis displayed increased LAT-1 and GLUT-1 and decreased pVHL expression (p < 0.001). In accordance with these data, silencing LAT-1 curtailed cell proliferation in BON cells. These findings suggest that specific mechanisms that increase nutrient uptake, such as LAT-1 and GLUT-1, are increased in GEP-NETs, whereas pVHL is decreased. These markers might be related to the proliferation and metastatic capacity of these tumors

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks
    corecore