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Abstract A bottom-up approach has been adopted to iden-
tify a flavour model that agrees with present experimental
measurements. The charged fermion mass hierarchies sug-
gest that only the top Yukawa term should be present at the
renormalisable level. Similarly, describing the lightness of
the active neutrinos through the type-I Seesaw mechanism,
right-handed neutrino mass terms should also be present
at the renormalisable level. The flavour symmetry of the
Lagrangian including the fermionic kinetic terms and only
the top Yukawa is then a combination of U (2) and U (3)

factors. Once considering the Majorana neutrino terms, the
associated symmetry is O(3). Lighter charged fermion and
active neutrino masses and quark and lepton mixings arise
considering specific spurion fields à laMinimal Flavour Vio-
lation. The associated phenomenology is investigated and
the model turns out to have almost the same flavour pro-
tection as the Minimal Flavour Violation in both quark and
lepton sectors. Promoting the spurions to dynamical fields,
the associated scalar potential is also studied and a minimum
is identified such that fermion masses and mixings are cor-
rectly reproduced. Very precise predictions for the Majorana
phases follow from the minimisation of the scalar potential
and thus the neutrinoless-double-beta decay may represent a
smoking gun for the model.
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1 Introduction

The seek of an explanation for the heterogeneity of fermion
masses and mixings is nowadays one of the biggest issues in
particle physics. The success of the standard model (SM) in
describing the strong and electroweak interactions through a
gauged symmetry encourages the idea that flavour symme-
tries may provide a solution to this problem.

The first attempt in this direction dates from the late seven-
ties, when Froggatt and Nielsen added to the SM symmetry
a global Abelian U (1) factor [1]. Fermions transform under
this new symmetry and the invariance of the Yukawa terms is
obtained through a new scalar, dubbed flavon, that is singlet
under the SM symmetry and transforms only under the U (1)

factor: the Yukawa terms are non-renormalisable operators
and include powers of the flavon to compensate the trans-
formations of the fermions. The cut-off scale �F represents
the mass scale of the underlying dynamics that originates the
Yukawa terms at lower energies. Fermion masses and mix-
ings arise when the flavon develops a non-vanishing vacuum
expectation value (VEV), breaking spontaneously the flavour
symmetry. The Froggatt-Nielsen approach has been adopted
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to describe both the quark and the lepton sectors [2–7], but
the large number of free parameters entering the Yukawa
matrices lowers the predictive power of the model.

Almost 20 years later, the very good agreement between
specific textures for the lepton mixing, such as the tri-
bimaximal one [8,9], and the data from neutrino oscillation
experiments suggested that discrete non-Abelian symmetries
[10–27] could represent a useful guide to understand the
flavour sector. The predictive power of this class of models is
high and flavour violating processes represent good smoking
guns for these constructions [28–36]. The 2011 discovery of
a relatively large value for the reactor angle [37–41] has dras-
tically changed the prospective on discrete flavour models,
whose most common prediction was a vanishing or extremely
small reactor angle.

On the other side, non-Abelian continuous symmetries
have received much attention both in the past and also in the
most recent years. Models implementing these symmetries
are typically more predictive than Froggatt–Nielsen mod-
els, and are more restrictive with respect to discrete flavour
models when considering the number and type of represen-
tations under which fields may transform. The probably best
known example is the so-called Minimal Flavour Violation
(MFV), which encodes the simple ansatz [42] that any source
of flavour and CP violation in any Beyond the SM (BSM) the-
ory is the same as in the SM, that is the Yukawa couplings.
This concept has been formulated in terms of the flavour sym-
metry arising in the limit of vanishing Yukawa couplings, that
is the flavour symmetry of the kinetic terms: the product of
a U (3) factor for each field species. In the quark sector it is
U (3)qL × U (3)uR × U (3)dR [43], where qL stands for the
quark SU (2)L doublet, while uR and dR stand for the quark
singlets. In the lepton sector, the choice of the flavour sym-
metry depends on the specific spectrum considered: in the
SM, it is U (3)�L × U (3)eR , where �L stands for the lepton
SU (2)L doublet and eR for the charged lepton singlets; in
the type I Seesaw context it is U (3)�L ×U (3)eR ×U (3)NR ,
with NR for the three right-handed (RH) neutrinos. The latter
choice is highly non-predictive and two smaller groups have
been considered, U (3)�L ×U (3)eR × SO(3)NR [44,45] and
U (3)�L+NR ×U (3)eR [46].
The whole Lagrangian is technically made invariant under
the flavour symmetry by promoting the Yukawa couplings to
spurion fields (i.e. non-dynamical fields with vanishing mass
dimension) transforming only under the flavour symmetry.
Once these spurions acquire specific background values (i.e.
the equivalent of VEVs if they were dynamical scalar fields
as considered in Refs. [47–50] – see also Refs. [51–55]),
the Yukawa terms exactly reproduce the measured values for
masses and mixing angles.
Any non-renormalisable operator containing fermion fields
is made flavour invariant by inserting Yukawa spurions. Once
the latter acquire background values, the strength of the

effects induced by such operator gets suppressed by spe-
cific combinations of fermion masses and mixing angles and
CP phases. As a consequence, the cut-off scale �F , which
would be constrained to be larger than hundreds or thousands
of TeVs in the generic case [56], can be instead as low as few
TeVs [43–46,57–75].
Seeking to promote the MFV from a low-energy description
to a well-defined theory even at higher energies, the spuri-
ons may be identified with dynamical scalar fields [47–50],
dubbed flavons: any flavon insertion should be suppressed
by a cut-off scale (larger than �F ) that keeps the total mass
dimension of any operator equal to d = 4. In particular,
the Yukawa terms are non-renormalisable operators of mass
dimension d = 5. This leads to a problematic aspect for
the MFV: in this top-down approach, all the fermions of the
same type are treated on the same foot, belonging to the same
triplet representation of aU (3) factor; it follows that even the
top Yukawa coupling is generated by the ratio between the
flavon VEV and the cut-off scale, although numerically is
close to one. This prevents a proper treatment of the per-
turbative expansion: even if this aspect may be cured using
non-linear σ model techniques [76], it raises doubts on the
MFV framework.

Recently, a new model based on non-Abelian continuous
symmetries has been proposed that treats the third family
fermions differently from the other fermions [77,78]: the
idea is that the Yukawa terms of the third family fermions
are invariant under the considered flavour symmetry without
any additional insertion of spurions; on the contrary, the ones
of the other generations still present these insertions. This
is technically achieved with the first two family fermions
in doublets of U (2) factors, one for each fermion species,
while the third family fermions are flavour singlets. Simi-
larly to the MFV scenario, the lighter fermion masses and
the mixing angles arise only via specific background values
of the spurions, whose insertion in non-renormalisable oper-
ators contributing to flavour observables allows predictions
consistent with data with a new physics (NP) scale at the
TeV [79–85]. This model is particularly interesting for the
top quark, whose Yukawa is naturally of order 1; on the other
hand, the smallness of the bottom and tau masses with respect
to the one of the top is explained through the introduction of a
second Higgs doublet; for this reason, this model is embedded
in the supersymmetric context. Moreover, while separating
the third family from the other two works pretty well for the
quark sector, where the largest mixing is between the first
two generations, this is not easily applicable to the lepton
sector, where the atmospheric angle is close to be maximal.
Indeed, in Ref. [78] where the U (2)n-model is extended to
the lepton sector, the lepton flavour symmetry is chosen to
be U (3)�L ×U (3)eR , for the SM spectrum case.

The main idea in this paper is to strictly follow what data
suggests, avoiding any additional requirement for a specular
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treatment of all the fermions species: within the SM context
with or without the addition of three RH neutrinos, the cri-
terium is that only the term corresponding to the top quark
mass and, if existing, to the RH neutrino Majorana masses
are invariant under the considered flavour symmetry with-
out any spurion insertion, while the Yukawa terms for the
other fermions need these insertions. The schematic struc-
ture for the resulting Yukawa and mass matrices, writing the
Lagrangian in the left-right notation, looks like

YU =
⎛
⎝
x x 0
x x 0
0 0 1

⎞
⎠ , YD =

⎛
⎝
x x x
x x x
y y y

⎞
⎠ ,

mν ∝
⎛
⎝
x x x
x x x
x x x

⎞
⎠ , YE =

⎛
⎝
x x y
x x y
x x y

⎞
⎠ ,

(1.1)

wheremν is the neutrino mass matrix as arises from the Wein-
berg operator [86]. The x and y entries represent spurion
background contributions and are numbers smaller than 1.
The vertical and horizontal lines help identifying the flavour
structures.

For the type I Seesaw case [87–91], the neutrino sector is
instead described by a Dirac Yukawa matrix and a Majorana
mass matrix as follows:

Yν =
⎛
⎝
x x x
x x x
x x x

⎞
⎠ , MR ∝ 1. (1.2)

The advantages of this model are multiple: it distinguishes
the third families from the lighter ones; it naturally describes
the top Yukawa of order 1, avoiding any technical difficulty
for the perturbative expansion in the case of promoting spu-
rions to flavons; it explains the smallness of the bottom and
tau masses with respect to the top mass without any addi-
tional assumption; it assigns neutrinos to the same flavour
representation, as suggested by the largeness of the atmo-
spheric and solar mixing angles. This model is therefore a
bottom-up approach, completely data driven, that encodes
the advantages of the MFV approach and of theU (2)n model
described abobe, avoiding their major drawbacks.

The Data Driven Flavour Model (DDFM) is explicitly con-
structed in Sect. 2, while Sect. 3 contains its phenomenolog-
ical analysis. In Sect. 4, the spurions are explicitly promoted
to flavons and the associated scalar potential is studied. Con-
clusions and comments are presented in Sect. 5.

2 Data driven flavour model

The Lagrangian of the DDFM model can be written as the
sum of different terms,

L = Lkin + LY − V(φ), (2.1)

Table 1 Transformation properties of quarks and quark spurions under
Gq

SU (2)qL SU (2)uR SU (3)dR

Q′
L 2 1 1

q ′
3L 1 1 1

U ′
R 1 2 1

t ′R 1 1 1

D′
R 1 1 3

�YU 2 2̄ 1

�YD 2 1 3̄

yD 1 1 3̄

where Lkin contains the canonical kinetic terms of all the
fields in the spectrum,V(φ) stands for the SM scalar potential
of the Higgs doublet φ, andLY is responsible for the fermion
masses.
Quark sector

The LY part of the Lagrangian for the quark sector can
be written as

− L
q
Y = yt q̄

′
3L φ̃ t ′R + �L

q
Y + h.c., (2.2)

where q ′
3L stands for the SU (2)L doublet of the left-handed

(LH) third family quarks, t ′R for the SU (2)L singlet RH top
quark, φ̃ = iσ2φ

∗, and �L
q
Y contains all the terms responsi-

ble for the other quark masses and quark mixings. The prime
identifies the flavour or interaction basis. The largest non-
Abelian quark flavour symmetry consistent with the whole
Lagrangian, neglecting �L

q
Y , is given by

Gq = SU (2)qL × SU (2)uR × SU (3)dR , (2.3)

where the notation matches the one of MFV as seen in the
introduction. The fields q ′

3L and t ′R appearing in L
q
Y are sin-

glets underGq . The other quark fields, instead, transform non-
trivially: the LH quarks of the first two families, labelled as
Q′

L , transform as a doublet under SU (2)qL ; the RH up-type
quarks of the first two families, indicated by U ′

R , transform
as a doublet under SU (2)uR ; finally, the three RH down-type
quarks, D′

R , transform altogether as a triplet of SU (3)dR .
The lighter families and the mixing are described in �L

q
Y ,

once a specific set of spurions are considered. In order to keep
the model as minimal as possible, only three spurions are
introduced: �YU that is a bi-doublet of SU (2)qL ×SU (2)uR ,
�YD that is a doublet-triplet of SU (2)qL × SU (3)dR , and
yD that is a vector triplet of SU (3)dR . The transformation
properties of quarks and spurions are summarized in Table 1.

The �L
q
Y part of the Lagrangian can then be written as

�L
q
Y = Q̄′

L φ̃ �YU U ′
R + Q̄′

L φ �YD D′
R

+q̄ ′
3L φ yD D′

R, (2.4)
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and masses and mixings arise once the spurions acquire the
following background values:

〈�YU 〉 ≡ �YU =
(
yu 0
0 yc

)
,

〈�YD〉 ≡ �YD =
(
ydV11 ysV12 ybV13

ydV21 ysV22 ybV23

)
, (2.5)

〈yD〉 ≡ yD = (
ydV31 ysV32 ybV33

)
,

where the Yukawa couplings yi are obtained by the ratio
between the corresponding quark mass and mt , and Vi j are
the entries of the measured CKM mixing matrix. The result-
ing Yukawa matrices are then given by the composition of
spurion background values,

YU =
( 〈�YU 〉 0

0 1

)
, YD =

( 〈�YD〉
〈yD〉

)
, (2.6)

where the YU is already diagonal,1 while YD is exactly diag-
onalised by the CKM matrix,

diag(yd , ys, yb) = V †YD . (2.7)

Lepton sector: minimal field content (MFC)
The construction of the leptonic sector depends on

whether the active neutrino masses originate through the
Weinberg operator or via the type I Seesaw mechanism. In the
purely SM case, in order to avoid yτ as an order 1 parameter,
no term should be present in L �

Y that does not need any spu-
rion insertion. There is no unique choice for the lepton flavour
symmetry that leads to this result: indeed, even the MFV sym-
metry U (3)�L ×U (3)eR prevents any direct mass term in the
Yukawa Lagrangian. Another possibility is that the charged
lepton sector mimics the down quark sector described above,
with the LH and RH fields transforming as two different rep-
resentations of the flavour symmetry. Although the choice
with the RH charged leptons in the triplet of U (3)eR and the
LH lepton doublets in the doublet+singlet combination of
U (2)�L is allowed, this would not be consistent with the large
atmospheric mixing. Only the opposite assignment is viable:
the LH doublets have to transform as a triplet of U (3)�L and
the RH charged leptons as a doublet+singlet of U (2)eR . An
interesting aspect of this second choice is that it is compat-
ible with the SU (5) grand unification setup, that may be an
ultraviolet completion of the model presented here. Only this
possibility for the charged lepton sector will be further con-
sidered in the following.

1 The vanishing entries ofYU in Eq. (2.6) receive contributions combin-
ing two or more spurions, being yD�Y†

D and its complex conjugate the
most relevant ones. However, once considering their background val-
ues, the largest contributions are proportional to y2

b , thus corresponding
to subleading corrections to the CKM angles. For this reason, these
contributions will not be considered.

Table 2 Transformation
properties of leptons and
leptonic spurions under GMFC

�

SU (3)�L SU (2)eR

L ′
L 3 1

E ′
R 1 2

τ ′
R 1 1

g
ν

6̄ 1

�YE 3 2̄

yE 3 1

The non-Abelian lepton flavour symmetry in this case is
then given by

GMFC
� = SU (3)�L × SU (2)eR , (2.8)

where the suffix MFC stands for the absence of any additional
degree of freedom in the fermionic spectrum of the SM, and
the notation matches the one of the MFV case reported in
the Introduction. Lepton masses and mixing are described
by means of three spurions: �YE that transforms as a triplet-
doublet ofGMFC

� ,yE as a vector triplet of SU (3)�L , and finally
g
ν

as a sextuplet of SU (3)�L . The transformation properties
of fermion and spurions in the lepton sector are summarized
in Table 2.

The Yukawa Lagrangian in the lepton sector in this mini-
mal setup is then given by

− L �,MFC
Y = L̄ ′

L φ �YE E ′
R + L̄ ′

L φ yE τ ′
R

+ 1

2�LN

(
L̄ ′c
L φ̃

)
g
ν

(
φ̃T L ′

L

)
+ h.c., (2.9)

and masses and mixings arise once the spurions acquire the
following background values:

〈�YE 〉 ≡ �YE =
⎛
⎝

ye 0
0 yμ
0 0

⎞
⎠ ,

〈yE 〉 ≡ yE = (
0 0 yτ

)T
,

〈g
ν
〉 ≡ gν = 2�LN

v2 U∗diag(mν1, mν2 , mν3)U
†, (2.10)

where the Yukawa couplings yi are obtained by the ratio
between the corresponding lepton mass andmt ,U is the mea-
sured PMNS matrix, �LN is the scale of lepton number vio-
lation, v = 246 GeV is the electroweak VEV, andmνi are the
active neutrino masses. The resulting charged lepton Yukawa
matrix is obtained combining the spurion backgrounds,

YE = (
�YE yE

)
, (2.11)

and it is diagonal in this chosen basis. The neutrino mass
matrix is directly proportional to gν and it is exactly diago-
nalised by the PMNS matrix,

diag(mν1 , mν2 , mν3) = v2

2�LN
UT gν U. (2.12)
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The careful reader may have noted that the spurion describing
flavour violating effects is exactly the same as the one in the
MLFV scenario [44]. Indeed, the only difference in terms
of symmetries between the two models is the RH charged
lepton sector.

Lepton sector: extended field content (EFC)
When considering the type I Seesaw context, three RH neu-
trinos are added to the SM spectrum2 and their masses are
assumed to be much larger than the electroweak scale. It fol-
lows that the lepton Yukawa Lagrangian can be written as

− L �,EFC
Y = 1

2
�LN N̄ ′c

R YN N ′
R + �L �,EFC

Y + h.c., (2.13)

where �LN is an overall scale associated to lepton number
violation, YN is a dimensionless matrix, and �L �,EFC

Y con-
tains all the terms responsible for the other lepton masses and
mixing. If YN is a completely generic matrix, then the lepton
flavour symmetry of the whole lepton Lagrangian, neglect-
ing �L �,EFC

Y , coincides with GMFC
� in Eq. (2.8), without any

additional term associated to N ′
R . Assuming that the charged

lepton sector is the same as in the minimal case and that the
spurions �YE and yE are introduced, only ν3 would receive a
mass via the Seesaw mechanism, while the other two neutri-
nos would remain massless: indeed, the Dirac neutrino mass
term would be invariant under the symmetry only inserting
yE , that however has only the third entry different from zero.
Adding an additional spurion that transforms as a triplet
of SU (3)�L with at least two non-vanishing entries would
not help, as it would introduce dangerous flavour changing
effects in the charged lepton sector.

A viable alternative is to consider that YN is the iden-
tity matrix. In this special case, the lepton flavour symmetry
is supplemented by a term associated to the RH neutrinos,
leading to

GEFC
� = SU (3)�L × SU (2)eR × SO(3)NR , (2.14)

where the RH neutrinos transform as a triplet of SO(3)NR .
To obtain a Dirac mass term invariant under the whole sym-
metry group, a new spurion transforming as a bi-triplet under
SU (3)�L ×SO(3)NR ,Yν , needs to be added. The transforma-
tion properties of leptons and lepton spurions for the Seesaw
case are summarized in Table 3.

The remaining part of the lepton flavour Lagrangian
�L �,EFC

Y can then be written as

�L �,EFC
Y = L̄ ′

L φ �YE E ′
R + L̄ ′

L φ yE τ ′
R + L̄ ′

L φ̃ Yν N ′
R,

(2.15)

2 The two RH neutrino case has been shown in Refs. [48,49] not to
be successful when minimising the scalar potential associated to the
flavons.

Table 3 Transformation properties of leptons and leptonic spurions
under GEFC

�

SU (3)�L SU (2)eR SO(3)NR

L ′
L 3 1 1

E ′
R 1 2 1

τ ′
R 1 1 1

N ′
R 1 1 3

�YE 3 2̄ 1

yE 3 1 1

Yν 3 1 3

and masses and mixings arise once the spurions �YE and yE
acquire the background values in Eq. (2.10), while Yν gets a
background value such that

〈Yν〉〈YT
ν 〉≡YνY

T
ν = 2�LN

v2 U diag(mν1, mν2 , mν3)U
T .

(2.16)

Indeed, after electroweak symmetry breaking, while the
charged lepton Yukawa is already diagonal, as in Eq. (2.11),
the active neutrino mass matrix originates from the Seesaw
mechanism and it is given by

1

2
ν̄′c
L mν ν′

L + h.c. with mν = v2

2�LN
Y ∗

ν Y
†
ν , (2.17)

which is then diagonalised by

diag(mν1 , mν2 , mν3) = UT mν U. (2.18)

Even in this extended version of the model, the spurion
describing flavour violating effects is the same as in the
extended MLFV scenario (see Ref. [44]).

The choice of the spurion background values in Eqs. (2.6)
and (2.10) or (2.16) is only partially arbitrary. Indeed, it is
possible to perform symmetry transformations to move the
unitary matrices or part of them from one sector to the other.
This is the case of the mixing between the first two families
of quarks: given that Q′

L is a doublet of SU (2)qL , it is possi-
ble to remove the Cabibbo angle from the down sector and to
make it appear in the up sector. However, as there is no cou-
pling between the first two generations of up-type quarks and
the top, it is not possible to entirely move the CKM matrix,
contrary to what happens in the MFV setup.

On the contrary, in the lepton sector, being L ′
L a triplet of

SU (3)�L , it is possible to entirely move the PMNS matrix
from the neutrino sector to the charged lepton one, through
a flavour symmetry transformation. This is also the case in
the MLFV scenario.

While the low-energy physics is independent from a spe-
cific choice of the spurion background values, the selected
configuration becomes physical once the spurions are pro-
moted to flavon fields. This aspect will be further investigated
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in Sect. 4, while the next one focuses on the phenomenology
of the model given the background values in Eqs. (2.6) and
(2.10) or (2.16).

3 Phenomenological analysis

The analysis is carried out adopting an effective field the-
ory approach and considering operators with at most mass
dimension six. The quark and lepton sectors will be examined
separately.

3.1 Phenomenology in the quark sector

There are several bilinear fermionic terms that should be
considered as building blocks of the d = 6 operators. Besides
the trivial ones,

Q̄′
L �(1,1,1) γμ Q′

L q̄ ′
3L �(1,1,1) γμ q ′

3L

D̄′
R �(1,1,1) γμ D′

R

Ū ′
R �(1,1,1) γμ U ′

R t̄ ′R �(1,1,1) γμ t ′R
t̄ ′R �(1,1,1) γμ q ′

3L

(3.1)

the following bilinears can be constructed:

Q̄′
L �(3,1,1) γμ Q′

L Q̄′
L �(2,1,1) γμ q ′

3L

D̄′
R �(1,1,8) γμ D′

R

D̄′
R �(2̄,1,3) γμ Q′

L D̄′
R �(1,1,3) γμ q ′

3L

Ū ′
R �(1,3,1) γμ U ′

R

Ū ′
R �(2̄,2,1) γμ Q′

L Ū ′
R �(1,2,1) γμ q ′

3L

t̄ ′R �(2̄,1,1) γμ Q′
L

Ū ′
R �(1,2,1) γμ t ′R Ū ′

R �(1,2,3̄) γμ D′
R

t̄ ′R �(1,1,3̄) γμ D′
R,

(3.2)

where the �(i, j,k) are flavour structures written in terms of the
spurions and transforming as (i, j, k) under Gq . As the back-
ground values of the spurions �YU , �YD and yD contain
the Yukawa couplings, the largest being yc or yb, the higher
the number of spurions is, the more highly suppressed the
corresponding term becomes. This leads to the conclusion
that a consistent expansion in terms of powers of spurions is
possible within the DDFM and then the most relevant terms
for each �(i, j,k) structures are the ones with the least number
of spurions.

For example, the structure �(2̄,1,3) can be written as

�(2̄,1,3) = �Y†
D + �Y†

D�YD�Y†
D + · · · (3.3)

where dots stand for contributions that involve a higher num-
ber of spurions. In general, free coefficients should be present
in front of any term, but to simplify the notation and without
any loss of generality they have been omitted. When spurion

background values are considered, the first term dominates,
and all the rest can be safely neglected.

Special care is required for �(1,1,1), as the dominant term
is the identity:

�(1,1,1) = 1 + Tr
(
�Y†

U�YU

)

+Tr
(
�Y†

D�YD

)
+ y†

DyD + · · · (3.4)

and therefore only the first term will be retained.
Flavour non-conserving effects arise due to two sources:

the first is the presence in the �(i, j,k) structure of the �YD

and yD spurions, that are the only ones with non-trivial
flavour structure; the second is associated to the fact that
fermions are in the flavour basis and, when moving to the
mass basis, the bilinears with down-type quarks acquire spe-
cific flavour structures. Indeed, below the EWSB and accord-
ing to Eqs. (2.6) and (2.7), the transformations to move to the
mass basis read

D′
Li

→ Vi j DL j b′
L → V3 j DL j D′

Ri → DRi

U ′
L ,Ri → UL ,Ri t ′L ,R → UL ,R3 ,

(3.5)

where D ≡ (d, s, b) and U ≡ (u, c, t). It follows that
Q̄′

L Q′
L and q̄ ′

3L q
′
3L contain flavour changing contractions

in the down sector once in the mass basis:

D̄′
L γμ D′

L =
∑
i=1,2

V ∗
i j Vik D̄L j γμ DLk

=
(
δ jk − V ∗

3 j V3k

)
D̄L j γμ DLk

b̄′
L γμ b′

L = V ∗
3 j V3k D̄L j γμ DLk ,

(3.6)

where the second equivalence of the first expression is just to
explicitly separate the flavour diagonal part from the flavour
non-diagonal one. If Q′

L and q ′
3L were in the same multiplet,

then the flavour non-diagonal parts would cancel each other,
as expected.

Table 4 contains the leading contributions for each �(i, j,k)

structure, specifying whether the leading contribution leads
to flavour changing (FC) effects.

It is easy to estimate the largest contribution within each
�(i, j,k) structure and it turns out that those entering the up
sector operators are at least as suppressed as those of the down
sector, with additional suppression in terms of the charm
Yukawa in some cases. This reason and the low precision
in measurements in the up sector with respect to those in
the down sector indicate that the strongest constraints on the
model will arise from the down sector, that will be indeed
the focus for the rest of this section.

3.1.1 Dimension 6 operators and bounds on the NP scale

The dimension 6 operators relevant for the phenomenologi-
cal analysis can be constructed combining the different bilin-
ears identified in the previous section, Eqs. (3.1) and (3.2).
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Table 4 Leading terms in each
�(i, j,k) structure. The column
on the right specifies the leading
term with non-trivial flavour
structure. For �(1,1,1) and
�(3,1,1) the contributions to the
down and up sectors are
different. For �(1,3,1) and
�(2̄,2,1) the leading terms have
trivial flavour structures and
further spurion insertions are
necessary to describe flavour
changing effects

�(i, j,k) Leading contribution Leading FC contribution

�(1,1,1) 1 Only down ⇒ 1

�(3,1,1) �YD�Y†
D ,�YU�Y†

U Up ⇒ �YD�Y†
D

Down ⇒ �YD�Y†
D ,�YU�Y†

U

�(2,1,1) �YDy
†
D �YDy

†
D

�(1,1,8) �Y†
D�YD �Y†

D�YD

�(2̄,1,3) �Y†
D �Y†

D

�(1,1,3) y†
D y†

D

�(1,3,1) �Y†
U�YU �Y†

U�YD�Y†
D�YU

�(2̄,2,1) �Y†
U �Y†

U�YD�Y†
D

�(1,2,1) �Y†
U�YDy

†
D �Y†

U�YDy
†
D

�(2̄,1,1) yD�Y†
D yD�Y†

D

�(1,2,3̄) �Y†
U�YD �Y†

U�YD

�(1,1,3̄) yD yD

The different operators can be grouped together consider-
ing the type and number of fields involved: 4 quarks (4Q), 2
quarks and 2 Higgs (2Q2H), 2 quarks and 1 gauge boson field
strength (2QV), 2 quarks and 2 leptons (2Q2L). The effective
Lagrangian of dimension 6 operators can be written as

L (6)
q =

∑
i

ci
Oi

�2 , (3.7)

where the list of operators can be found in the following and
the ci are free coefficients expected to be of the same order.
� refers to the scale of new physics that is expected to give
rise to these operators.

4Q. The list of operators involving 4 quark fields that are
relevant for the analysis is the following:

O1 = (
Q̄′

L γμ Q′
L

) (
Q̄′

L γ μ Q′
L

)

O2 = (
q̄ ′

3L γμ q ′
3L

) (
q̄ ′

3L γ μ q ′
3L

)

O3 = (
Q̄′

L γμ σ aQ′
L

) (
Q̄′

L γ μ σ aQ′
L

)

O4 = (
q̄ ′

3L γμ σ aq ′
3L

) (
q̄ ′

3L γ μ σ aq ′
3L

)

O5 = (
Q̄′

L γμ T aQ′
L

) (
Q̄′

L γ μ T aQ′
L

)

O6 = (
q̄ ′

3L γμ T aq ′
3L

) (
q̄ ′

3L γ μ T aq ′
3L

)

O7 =
(
Q̄′

L γμ T aσ bQ′
L

) (
Q̄′

L γ μ T aσ bQ′
L

)

O8 =
(
q̄ ′

3L γμ T aσ bq ′
3L

) (
q̄ ′

3L γ μ T aσ bq ′
3L

)

O9 = (
Q̄′

L γμ Q′
L

) (
D̄′

R γ μ D′
R

)

O10 = (
q̄ ′

3L γμ q ′
3L

) (
D̄′

R γ μ D′
R

)

O11 = (
Q̄′

L γμ Q′
L

) (
D̄′

R γ μ D′
R

)

O12 = (
q̄ ′

3L γμ T aq ′
3L

) (
D̄′

R γ μ T aD′
R

)

O13 = (
Q̄′

L γμ Q′
L

) (
Ū ′

R γ μ U ′
R

)

O14 = (
q̄ ′

3L γμ q ′
3L

) (
Ū ′

R γ μ U ′
R

)

O15 = (
Q̄′

L γμ T aQ′
L

) (
Ū ′

R γ μ T aU ′
R

)

O16 = (
q̄ ′

3L γμ T aq ′
3L

) (
Ū ′

R γ μ T aU ′
R

)
, (3.8)

where σ a stand for the Pauli matrices and T a

for the Gell-Mann matrices. Other operators can
be written with a similar structure, but they are
either redundant or more suppressed. As an exam-
ple, the operator Q̄′

L γμ Q′
L q̄

′
3L γ μ q ′

3L is redun-
dant with respect to the ones listed above as its
contribution, once focusing only into the down-
type quarks, is already described by the two oper-
ators in the first line of Eq. (3.8). Other exam-
ples are the operators Q̄′

L �(2,1,1) γμ q ′
3L Q̄′

L γ μ Q′
L

and Q̄′
L �(2,1,1) γμ q ′

3L q̄
′
3L γ μ q ′

3L : the presence of
�(2,1,1) indicates that the corresponding contribution
is more suppressed with respect to the one arising
from the first two operators in the list. For this rea-
son, these operators have not been considered.
Once moving to the mass basis and focusing only on
the down quark sector, using Eq. (3.6), the relevant
interactions describing flavour changing effects read
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(
V ∗

3 j V3k D̄L j γμ DLk

)2

V ∗
3 j V3k

(
D̄Li γμ DLi

) (
D̄L j γ μ DLk

)

V ∗
3 j V3k

(
D̄Li γμ σ aDLi

) (
D̄L j γ μ σ aDLk

)

V ∗
3 j V3k

(
D̄Li γμ T aDLi

) (
D̄L j γ μ T aDLk

)

V ∗
3 j V3k

(
D̄Li γμ T aσ bDLi

) (
D̄L j γ μ T aσ bDLk

)

V ∗
3 j V3k

(
D̄Ri γμ DRi

) (
D̄L j γ μ DLk

)

V ∗
3 j V3k

(
D̄Ri γμ T aDRi

) (
D̄L j γ μ T aDLk

)

V ∗
3 j V3k

(
ŪRi γμ URi

) (
D̄L j γ μ DLk

)

V ∗
3 j V3k

(
ŪRi γμ T aURi

) (
D̄L j γ μ T aDLk

)
.

(3.9)

The first term in this list describes a �F = 2 struc-
ture, while all the others only �F = 1. Additional
terms arise from Eq. (3.8), but they are redundant with
respect to the structures listed in Eq. (3.9): for exam-
ple, �F = 2 structures with the insertion of SU (3)c
or SU (2)L generators turn out to be equivalent to the
first one in this list after using Fiertz identities.
Comparing this result with the MFV case, the two
bases of independent structures coincide for the down
quarks: the list in Eq. (3.9) corresponds to O0, Oq1,
Oq2, Oq3, Oq4, Oq5, Oq6, Oq7, Oq8, respectively,
adopting the notation used in Ref. [43]. The suppres-
sion due to the CKM matches exactly the λFC term of
the MFV analysis: indeed, the matching conditions
between the two lists of operators read

a0 = c1 + c2 aq1 = −2c1 aq2 = −2c3

aq3 = −2c5 aq4 = −2c7

aq5 = −c9 + c10 aq6 = −c11 + c12

aq7 = −c13 + c14 aq8 = −c15 + c16,

(3.10)

where ai are the free coefficient associated to the
Oi operator in the MFV context, while ci are the
coefficients appearing in the effective Lagrangian in
Eq. (3.7).

2Q2H. There are four relevant operators that can be con-
structed with two quark fields and two Higgs doublet
fields:

O17 = i
(
Q̄′

L γμ Q′
L

) (
φ†←→D μφ

)

O18 = i
(
q̄ ′

3L γμ q ′
3L

) (
φ†←→D μφ

)

O19 = i
(
Q̄′

L γμ σ aQ′
L

) (
φ†←→D μaφ

)

O20 = i
(
q̄ ′

3L γμ σ aq ′
3L

) (
φ†←→D μaφ

)
,

(3.11)

where φ†←→D μφ ≡ φ†Dμφ−(Dμφ)† φ and φ†←→D μa

φ ≡ φ†σ aDμφ − (Dμφ)† σ aφ are the hermitian
derivatives. Operators involving RH quark currents
are more suppressed as any flavour changing effect
can only be achieved by the insertion of spurions, and
have for this reason been discarded from the previous
list.
In the mass basis and focusing on the down quark
sector, there is only one interesting structure arising
from these operators,

V ∗
3 j V3k

(
D̄L j γμDLk

)
Zμ (h + v)2 . (3.12)

Even in this case, this structure coincides with that
of the MFV context OH1 and OH2 respectively, and
involve the same pattern of flavour suppression, with
the matching conditions given by

aH1 = −c17 + c18 aH2 = −c19 + c20. (3.13)

2QV. The operators that involve gauge boson field strengths
below EWSB, that are the only relevant ones for low-
energy flavour processes, are those with gluons and
photons:

O21 = φ†
(
D̄′

R �(2̄,1,3) σμν T aQ′
L + h.c.

)
Ga

μν

O22 = φ† (
D̄′

R �(1,1,3) σμν T aq ′
3L + h.c.

)
Ga

μν

O23 = (
Q̄′

L γ μT aQ′
L

)
DνGa

μν

O24 = (
q̄ ′

3L γμT
aq ′

3L

)
DνGa

μν

O25 = φ†
(
D̄′

R �(2̄,1,3) σμν Q′
L + h.c.

)
Fμν

O26 = φ† (
D̄′

R �(1,1,3) σμν q ′
3L + h.c.

)
Fμν

O27 = (
Q̄′

L γ μQ′
L

)
DνFμν

O28 = (
q̄ ′

3L γ μq ′
3L

)
DνFμν. (3.14)

As for the previous category, operators involving
purely RH currents are more suppressed and therefore
have not been considered. In the quark mass basis and
focusing only in the down quark sector, the relevant
structures are

ydj V
∗
3 j V3k (v + h)

(
D̄R j σμν T aDLk + h.c.

)
Ga

μν

V ∗
3 j V3k

(
D̄L j σμν γ μT aDLk

)
DνGa

μν

ydj V
∗
3 j V3k (v + h)

(
D̄R j σμν DLk + h.c.

)
Fμν

V ∗
3 j V3k

(
D̄L j σμν γ μDLk

)
DνFμν,

(3.15)

where the relations (�YD)i j = ydj Vi j and (yD)i =
ydi V3i , where yd ≡ {yd , ys, yb}, have been used.
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These structures find an equivalent in the MFV anal-
ysis with the operators OG1, OG2, OF1 and OF2

respectively, and have the same suppression in terms
of down Yukawas and CKM elements. The matching
conditions read

aG1 = −c21 + c22 aG2 = −c23 + c24

aF1 = −c25 + c26 aF2 = −c27 + c28.
(3.16)

2Q2L. The last class of operators are those involving two
quarks and two leptons and they read

O29 = (
Q̄′

L γμ Q′
L

) (
L̄ ′
L γ μ L ′

L

)

O30 = (
q̄ ′

3L γμ q ′
3L

) (
L̄ ′
L γ μ L ′

L

)

O31 = (
Q̄′

L γμ σ aQ′
L

) (
L̄ ′
L γ μ σ a L ′

L

)

O32 = (
q̄ ′

3L γμ σ aq ′
3L

) (
L̄ ′
L γ μ σ a L ′

L

)

O33 = (
Q̄′

L γμ Q′
L

) (
Ē ′
R γ μ E ′

R

)

O34 = (
q̄ ′

3L γμ q ′
3L

) (
Ē ′
R γ μ E ′

R

)

O35 = (
Q̄′

L γμ Q′
L

) (
τ̄ ′
R γ μ τ ′

R

)

O36 = (
q̄ ′

3L γμ q ′
3L

) (
τ̄ ′
R γ μ τ ′

R

)
.

(3.17)

Operators constructed with RH quark currents are
more suppressed and have been neglected in the pre-
vious list. In the fermion mass basis, these operators
give rise to the following interactions:

V ∗
3 j V3k

(
D̄L j γμ DLk

)
ν̄L γ μ νL

V ∗
3 j V3k

(
D̄L j γμ DLk

)
ĒL γ μ EL

V ∗
3 j V3k

(
D̄L j γμ DLk

)
(
ēR γ μ eR + μ̄R γ μ μR + c36 − c35

c34 − c33
τ̄R γ μ τR

)
,

(3.18)

where EL ≡ {eL , μL , τL} andνL ≡ {νL1 , νL2 , νL3},
and the ratio of the coefficients in front of the tau
component is due to the independence of operators
O33–O36: in the DDFM, these lepton interactions are
decorrelated.
These three structures appear also in the MFV analy-
sis, where they are called O�1 , O�2 and O�3 , and the
suppression is the same. The only difference is in the
correlation present in the MFV case between the first
two lepton generations and the third one in the last
operator. The matching conditions read

a�1 = −c29 + c30 a�2 = −c31 + c32

ae,μ
�3 = −c33 + c34 aτ

�3 = −c35 + c36,
(3.19)

where the index {e, μ, τ } of a�3 refers to the lepton
family.

The flavour suppressions present in any dimension 6 oper-
ator, once restricting to the down quark sector, result to be
identical to those in the MFV context. There are only two
differences: the first is in the decorrelation of the operators
O33–O36, just mentioned above, that leads to lepton flavour
non-universality. More in detail, the operatorO�3 in the MFV
scenario contributes to the decay rates of Bs → μ+μ− and
Bs → τ+τ− exactly in the same way; this is not the case in
the DDFM, where operators O33 and O34 contribute only to
the first observable, while operatorsO35 andO36 contribute to
the second process. At the moment, data with taus in the final
states are absent, but in the future, any non-universality effect
in the μ− τ sector of these observables may disfavour MFV
and be compatible with the DDFM. Similar comments apply
for the two observables B → K ∗μ+μ− and B → K ∗τ+τ−.
Commenting on the recent non-universality effects in the
e − μ sector in B-decays, both MFV and DDFM predict
lepton universality and therefore cannot explain the present
anomalies in these processes.

The second difference with respect to MFV is manifest
with the matching conditions between the coefficients of
MFV and of the DDFM: if, for any reason, the coefficients
of the O2n and O2n−1 operators, for any n ≥ 9, are identi-
cal, then the last four contributions shown in Eq. (3.9), and
all those in Eqs. (3.12), (3.15) and (3.18) are vanishing and
the subleading ones should be considered. However, disre-
garding that this occurs for a tuning between the parameters
and looking at a more fundamental explanation, this limit
is equivalent to having QL and q3L in the same multiplet. If
this happens, these contributions turn out to be non-vanishing
and to have exactly the same suppression in terms of CKM
entries. Indeed, even if the RH quarks are taken within the
same multiplet, the up-quark spurion would transform as a
bi-triplet of the flavour symmetry: this is exactly what hap-
pens in the MFV case and the contributions in Eqs. (3.9),
(3.12), (3.15) and (3.18) are restored, but multiplied by y2

t .3

Eqs. (3.9), (3.12), (3.15) and (3.18) allow to conclude that
the leading �F = 1 and �F = 2 FCNC amplitudes, once
neglecting the light quark mass contributions, get the same
suppressions in terms of CKM elements as in the SM: it is
then possible to generically write the amplitudes within the
DDFM as [67]

A
(
d j → dk

)
= V ∗

3 j V3k A(�F=1)
SM[

1 + c�F=1
16π2M2

W

�2

]
(3.20)

A (
Mjk → M̄ jk

) =
(
V ∗

3 j V3k

)2 A(�F=2)
SM

3 The condition of having the three RH quarks within the same multiplet
is not strictly necessary. If they transform as 2+1, then the up-quark
spurion would transform as a doublet-triplet and its background value
would contain the top-quark Yukawa.
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[
1 + c�F=2

16π2M2
W

�2

]
(3.21)

where ASM are the SM loop amplitudes and the c�F=1,2 are
O(1) real parameters and depend on the specific operator
considered. Moreover, the c�F=1,2 coefficients are flavour
blind, except for the operators O33–O36, where they differ-
entiate the τ observables from the ones containing e and μ.

Before commenting on the bounds on the NP scale, it is
worth noticing the stability of the CKM entries against NP
corrections. As for the MFV scenario, several constrains that
are used to determine the CKM matrix are not affected by NP,
not only at tree-level but also at loop level. An example is the
time-dependent CPV asymmetry in Bd → ψ KL ,S , where
Eq. (3.21) implies that the weak CPV phase in the Bd − B̄d

mixing is exactly the same as in the SM, arg
[
(V ∗

33V31)
2
]
.

Only εK and �mBd are sensitive to NP effects within the
DDFM and can be used to constrain the NP scale.

The bounds on the dimension 6 operators within the
DDFM are the same as in the MFV framework and repre-
sentative examples are reported in Table 5 [67].

The bounds turn out to be in the TeV range and this sug-
gests that precision investigations in rare decays together with
complementary studies at colliders may play a key role to
unveil the physics behind the flavour sector.

3.2 Phenomenology in the lepton sector

The analysis in the lepton sector is very similar to the one of
the MLFV case presented in Ref. [73]. Indeed, as said above,
the only difference between the DDFM and MLFV concerns
the RH charged leptons, while the LH leptons and the RH
neutrinos transform in the same way under the same sym-
metries; as a result, the spurions describing flavour changing
effects, which are only associated to the LH sector, are the
same in the two models, in both minimal and extended field
content cases. For this reason, the main aspects of the anal-
ysis in Ref. [73] will be summarised here, pointing out the
differences between the two models.

Only three lepton bilinears are relevant for the phe-
nomenological analysis:

MFC: L̄ ′
L �(8,1) γμ L ′

L L̄ ′
L �(3,2) φ E ′

R L̄ ′
L �(3,1) φ τ ′

R

EFC: L̄ ′
L �(8,1,1) γμ L ′

L L̄ ′
L �(3,2,1) φ E ′

R L̄ ′
L �(3,1,1) φ τ ′

R,

(3.22)

where the �i, j transform under GMFC
� , while �i, j,k under

GEFC
� . The leading contributions with non-trivial flavour

structure entering these � are written in terms of g
ν
, �YE ,

yE for the MFC case and Yν , �YE , yE for the EFC one:

MFC: �(8,1) = g†
ν
g
ν

�(3,2) = g†
ν
g
ν
�YE �(3,1) = g†

ν
g
ν
yE

EFC: �(8,1,1) = Yν Y†
ν �(3,2,1) = Yν Y†

ν �YE �(3,1,1) = Yν Y†
ν yE .

(3.23)

In the MFC case, the combination of spurions entering
the � structures can be directly related to lepton masses
and PMNS entries, while this is not the case for the EFC
case. From Eq. (2.16), the combination of spurions associ-
ated to neutrino masses and PMNS entries is Yν YT

ν that is
not exactly the combination listed above,Yν Y†

ν , and prevents
to have predictivity for the flavour violating observables. To
overcome this problem, CP conservation in the lepton sector
has been assumed [44], such that

Yν Y†
ν = Yν YT

ν . (3.24)

In Ref. [44], this condition as been implemented assuming
vanishing Dirac and Majorana phases. A milder condition
introduced in Ref. [73] implies δ�

CP = {0, π} for the Dirac
CP phase and η1,2 = {0, π} for the Majorana phases, accord-
ing to the convention of the PDG [92]. While no constraint
on the Majorana phases is present, the possible window of
values for the Dirac one started to shrink in recent years:
for the neutrino Normal Ordering (NO) case the 3σ range
is [141◦, 370◦] ([144◦, 357◦]), while for the Inverse Order-
ing (IO) it is [205◦, 354◦] ([205◦, 348◦]), without (with) the
Super-Kamiokande atmospheric data taken into considera-
tion [93]. It follows that δ�

CP = {0, π} is compatible at 3σ

with the present data only for the NO case, while for the IO
it is only close to the allowed region but not inside.

The two conditions described above are necessary to pro-
vide predictivity of the model as it is not possible to deduce
Yν from the low-energy neutrino data. However, as it will be
shown in Sect. 4.2, the minimisation of the scalar potential
leads to a specific value forYν , thus overcoming the predictiv-
ity problem. This aspect will be considered in the discussion
that follows.

An interesting difference between the MFC and EFC cases
is in the dependence of � on the lightest active neutrino
mass: in the MFC scenario, flavour changing entries of � are
completely fixed in terms of the PMNS entries and neutrino
mass square differences, and the only free parameter is �LN ;
in the EFC case, there is an extra dependence on the lightest
neutrino mass. This potentially allows to distinguish between
the two possibilities, as it will be explicitly shown in the
following.

Contrary to what happened in the quark sector, the charged
leptons are already in the mass basis:

E ′
L → EL ν′

L → U νL E ′
R,i → ER,i

τ ′
R → ER,3,

(3.25)

where E ≡ {e, μ, τ } and ν ≡ {ν1, ν2, ν3}. For this reason,
trivial combinations of � do not lead to flavour violating
effects in the lepton sector.
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Table 5 Lower bounds on the
NP scale for some representative
effective dimension 6 operators.
The values of � are at 95% C.L.
and are obtained considering
that only the operators of the
same class contribute to the
given observables. No
cancellations among the
corresponding coefficients are
allowed

Operators Bound on �/
√
ai Observables

O1, O2 5.9 TeV εK , �mBd . �mBs

O17, O18 4.1 TeV Bs → μ+μ−, B → K ∗μ+μ−

O21, O22 3.4 TeV B → Xsγ , B → Xs�
+�−

O25, O26 6.1 TeV B → Xsγ , B → Xs�
+�−

O27, O28 1.7 TeV B → K ∗μ+μ−

O29, O30, O31, O32 5.7 TeV Bs → μ+μ−, B → K ∗μ+μ−

O33, O34 5.7 TeV Bs → μ+μ−, B → K ∗μ+μ−

3.2.1 Dimension 6 operators and prospects for LFV and
0ν2β decay

The most relevant observables in the lepton sector are the rare
radiative decays, the μ → e conversion in nuclei, μ → 3e
and the neutrinoless-double-beta (0ν2β) decay. The associ-
ated low-energy effective Lagrangian can be written as

L (6)
� =

5∑
i=1

c(i)
LL

O(i)
LL

�2 +
⎛
⎝

4∑
j=1

c( j)
RL

O
( j)
RL

�2 + h.c.

⎞
⎠ , (3.26)

where c(i)
LL and c( j)

RL are free coefficients of order 1 and the
operators read

O(1)
LL =i L̄ ′

Lγ μ�(8,1,(1))L
′
L

(
φ†←→D μφ

)
,

O(2)
LL =i L̄ ′

Lγ μσ a�(8,1,(1))L
′
L

(
φ†←→D a

μφ
)

,

O(3)
LL =L̄ ′

Lγ μ�(8,1,(1))L
′
L Q̄′

LγμQ
′
L

O(4d)
LL =L̄ ′

Lγ μ�(8,1,(1))L
′
L D̄

′
RγμD

′
R ,

O(4u)
LL =L̄ ′

Lγ μ�(8,1,(1))L
′
LŪ

′
RγμU

′
R ,

O(5)
LL =L̄ ′

Lγ μσ a�(8,1,(1))L
′
L Q̄′

Lγμσ aQ′
L ,

O(6)
LL =L̄ ′

Lγ μ�(8,1,(1))L
′
L q̄

′
3Lγμq

′
3L ,

O(7)
LL =L̄ ′

Lγ μσ a�(8,1,(1))L
′
L q̄

′
3Lγμσ aq ′

3L ,

O(1)
RL =g′ L̄ ′

Lφσμν�(3,2,(1))E
′
R Bμν ,

O(2)
RL =gL̄ ′

Lφσμνσ a�(3,2,(1))E
′
RW

a
μν ,

O(3)
RL =g′ L̄ ′

Lφσμν�(3,1,(1))τ
′
R Bμν ,

O(4)
RL =gL̄ ′

Lφσμνσ a�(3,1,(1))τ
′
RW

a
μν,

(3.27)

adopting and extending the notation of Ref. [73], with the
third index (k) within �(i, j,(k)) referring only to the EFC
case. After moving to the mass basis, Eqs. (3.5) and (3.25),
the dominant interactions involving charged leptons are the
following:

ĒLγ μ�(8,1,(1))EL Zμ (h + v)2

ĒLγ μ�(8,1,(1))EL D̄LγμDL

ĒLγ μ�(8,1,(1))EL ŪLγμUL

ĒLγ μ�(8,1,(1))EL D̄RγμDR

ĒLγ μ�(8,1,(1))EL ŪRγμUR

ĒLi (v + h) σμν
((

�(3,2,(1))

)
i1
eR +

(
�(3,2,(1))

)
i2

μR

+c(3)
RL

c(1)
RL

(
�(3,1,(1))

)
i3 τR

)
Fμν

ĒLi (v + h) σμν
((

�(3,2,(1))

)
i1
eR +

(
�(3,2,(1))

)
i2

μR

+c(4)
RL

c(2)
RL

(
�(3,1,(1))

)
i3 τR

)
Zμν. (3.28)

The only relevant difference with respect to the MLFV
case (see Ref. [73] as a reference) appears when the τ lepton
is involved, as can be seen from the presence of the ratios
of coefficients in front of the last terms in the last two lines
of Eq. (3.28). The matching conditions among the operators
listed above and their corresponding siblings in the MLFV
scenario, O1−5

LL and O1,2
RL , read

a(1−5)
LL = c(1−5)

LL ,
(
a(1,2)
RL

)e,μ = c(1,2)
RL ,

(
a(1,2)
RL

)τ = c(3,4)
RL , (3.29)

where ai are the coefficients of the MLFV operators, and
the index e, μ and τ refers to the RH lepton involved in the
operators.

Lepton flavour violating processes
Equation (3.29) leads to the conclusion that the results pre-
sented in that paper for μ → eγ , μ → 3e and μ → e
conversion in nuclei are unchanged. In particular the plots
in Fig. 1 in Ref. [73] hold also for the DDFM: the strongest
bound originates from the μ → e conversion in nuclei and
identifies the allowed region in the �×�LN parameter space.
On the other hand, radiative τ decay amplitudes receive dif-
ferent contributions and therefore represent a possibility to
disentangle the DDFM from the MLFV scenario. This will
be the focus in the rest of this section.
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The BSM contributions to the branching ratio of leptonic
radiative rare decays are given by

Bμ→eγ ≡ �(μ → eγ )

�(μ → eνμν̄e)

= 384π2e2 v4

4�4

∣∣�μe
∣∣2

∣∣∣c(2)
RL − c(1)

RL

∣∣∣2

Bτ→�iγ ≡ �(τ → �iγ )

�(τ → �iντ ν̄�i )

= 384π2e2 v4

4�4

∣∣�τ�i

∣∣2
∣∣∣c(4)

RL − c(3)
RL

∣∣∣2
,

(3.30)

neglecting terms proportional to the mass of the lepton in the
final state. In MLFV, the coefficient combination entering
these expressions is the same and therefore cancel out when
considering ratios of branching ratios:

Rrs
i j ≡ B�r→�sγ

B�i→� jγ

=
∣∣��r �s

∣∣2

∣∣��i � j

∣∣2 . (3.31)

This is not the case for all of the three ratios in the DDFM
due to the fact that the combinations are different:

Rμe
τ i ≡ Bμ→eγ

Bτ→�iγ

=
∣∣�μe

∣∣2
∣∣∣c(2)

RL − c(1)
RL

∣∣∣2

∣∣�τ�i

∣∣2
∣∣∣c(4)

RL − c(3)
RL

∣∣∣2 ,

Rτe
τμ ≡ Bτ→eγ

Bτ→μγ

= |�τe|2∣∣�τμ

∣∣2 . (3.32)

It follows that the results shown in Fig. 4 of Ref. [73] for
the Rτe

τμ observable also hold for the DDFM and therefore
will not be repeated here. On the other hand, Figs. 1 and 2
report the plots associated to Rμe

τμ and Rμe
τe respectively, that

differ from the corresponding plots in the MLFV case. In
the scatter plots, neutrino oscillation parameters are ran-
domly sampled within their 2σ uncertainties as reported in
Ref. [93]. The lightest neutrino mass is taken in the window
[0.001, 0.1] eV, whereas, for the free parameters, the ratio∣∣∣c(2)

RL − c(1)
RL

∣∣∣ /
∣∣∣c(4)

RL − c(3)
RL

∣∣∣, is taken as random in the range

[0.5, 2]. These two parameters are taken to follow a loga-
rithmic distribution, as to clearly show the allowed region of
the parameter space. The density of the points in these scatter
plots should not be interpreted as related to the likelihood of
different populated regions of the parameter space.

The upper plot of Fig. 1 shows that, in the MFC case,
Rμe

τμ is independent of the lightest neutrino mass, as already
commented before, and NO and IO cannot be distinguished
as the corresponding bands of points overlap. Comparing
with the corresponding plot in Fig. 2 of Ref. [73] for MLFV,
where Rμe

τμ spans the range [0.03, 0.07], this ratio in the
DDFM covers a much larger interval [0.01, 0.2]; this is the

effect of the combination
∣∣∣c(2)

RL − c(1)
RL

∣∣∣ /
∣∣∣c(4)

RL − c(3)
RL

∣∣∣, that is

only present in the DDFM.

The lower left and right plots represent the EFC sce-
nario for NO and IO respectively. The dependence on
the lightest neutrino mass is only present for the NO
case. The two orderings may be distinguished only for
small values of mlightest

ν , where the two bands present
some differences. Once again, when comparing with the
MLFV case, the DDFM is characterised by much wider
bands due the presence of the free parameters in the ratio
Rμe

τμ.
Very similar comments hold for the plots describing Rμe

τe

as shown in Fig. 2. Whether it will be possible to distinguish
the DDFM from the MLFV scenario only depends on the
values and sensitivities of the τ radiative decays. Assum-
ing the current bound for Bμ→eγ is fullfilled [97], the latter
are still far from the reach of present and near-future exper-
imental facilities (see Ref. [98] for updated combined upper
limits on Bτ→e/μγ and Ref. [99] for prospects). On the other
hand, disentangling between NO and IO may be possible
only for values of the lightest neutrino mass smaller than
∼ 0.01 eV, that is approximately where the two bands do
not overlap.

The results discussed so far have been achieved imple-
menting the relation in Eq. (3.24). However, they still hold
even when considering the explicit value of Yν originated by
the scalar potential minimisation, that will be discussed in
Sect. 4.2.

0ν2β-decay
The 0ν2β effective mass mee depends strongly on the val-
ues of the Dirac and Majorana phases and for this reason
the Yν resulting from the minimisation of the scalar poten-
tial in Sect. 4.2 will be adopted. In particular, only in the
EFC scenario a precise prediction for the Dirac and Majorna
phases can be found: the Dirac phase can be either vanish-
ing or equal to π and the Majorana phases have two pos-
sible set of values, η1 = π/2 = η2 and η1 = 0 , η2 =
π/2.

The prediction for mee is reported in Fig. 3, where the
points have been obtained with the oscillation parameters
varied within the 2σ experimentally allowed regions. Every-
thing shown green is obtained assuming NO, while red stands
for IO. The dark (light) shaded regions, delimited by dashed
(dotted) lines, correspond to all the parameter space allowed
with the best fit (3σ ) values for the masses and mixings.
The region shaded in blue is the exclusion limit set by the
KamLAND-Zen experiment [94] on mee. As it can be seen,
the allowed parameter space is very limited and therefore a
combined measure of mee and of mlightest

ν would precisely
test the model. Ultimately it is the global analysis of the dif-
ferent flavour signatures discussed throughout this section
that will help discriminate between this and other flavour
alternatives.

123



Eur. Phys. J. C           (2020) 80:854 Page 13 of 23   854 

Fig. 1 Rμe
τμ for MFC (upper plot) and EFC (lower plots) as a function of the lightest neutrino mass. In the upper plot, neutrino NO is in green

while IO is in red. The lower left plot refers to NO, while the lower right to IO

Fig. 2 Rμe
τe for MFC (upper plot) and EFC (lower plots) as a function of the lightest neutrino mass. In the upper plot, neutrino NO is in green

while IO is in red. The lower left plot refers to NO, while the lower right to IO
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Fig. 3 0ν2β prediction for the effective Majorana mass as a function of the lightest neutrino mass, considering two sets of Majorana phases:
η1 = π/2 = η2 (left) and η1 = 0 , η2 = π/2 (right). In green is shown NO, while IO appears in red

4 Flavon scalar potential

It is unlikely that the DDFM holds up to arbitrarily high ener-
gies. Indeed, it may be considered as an effective description
valid only up to a certain energy scale � f . In this sense,
the spurions may be interpreted as the VEVs of (elemen-
tary or composite) scalar fields that are dynamical at scales
larger than � f . In the literature, such scalar fields that only
transform under the flavour symmetries of the model, are typ-
ically referred to as flavons. The aim of this section is to study
the scalar potential associated with these flavons, ultimately
determining whether the VEVs described by Eqs. (2.6),
(2.10) and (2.16) can arise from its minimisation.

4.1 The quark sector

After promoting the spurions to flavon fields, the quark
Yukawa Lagrangian �L

q
Y in Eq. (2.4) reads

�L
q
Y = Q̄′

L φ̃
�YU

� f
U ′

R + Q̄′
L φ

�YD

� f
D′

R

+q̄ ′
3L φ

yD
� f

D′
R, (4.1)

where �YU , �YD and yD have mass dimension 1 and their
insertion has been correspondingly suppressed by a power of
� f . As the flavour symmetry is spontaneously broken, the
flavons acquire VEVs proportional to � f

〈�YU 〉 ≡ � f �YU , 〈�YD〉 ≡ � f �YD ,

〈yD〉 ≡ � f yD, (4.2)

where �YU , �YD , and yD are the objects previously intro-
duced as spurious background values in Eq. (2.6).

The most general scalar potential can be now written as the
sum of two pieces: the first corresponding to the traditional
SM Higgs potential V(φ), whereas the second will include
the newly introduced flavon fields:

Vq (φ,�YU ,�YD, yD)=
∞∑
i=4

V(i)
q (φ,�YU , �YD, yD) ,

(4.3)

where the i index has been used to label the dimension of the
operators entering each term of the sum. For the rest of this
section we will restrict our attention to the renormalisable
potential V(4)

q .
As no signs of new scalar fields have emerged at exper-

iments, the typical energy scale of the flavons, that is the
flavour symmetry breaking scale � f , is taken to be (much)
larger than the EW scale v. Moreover, to prevent large modifi-
cations of the SM scalar potential that triggers the EWSB, the
couplings that describe interactions between the SM Higgs
doublet and the flavons are assumed to be small: if this were
not the case, after the spontaneous flavour symmetry break-
ing, new contributions to the quadratic Higgs term of the
order of �2

f would be generated, introducing a (severe) fine-
tuning in the Higgs parameters. For this reason, only the
purely flavon dependent couplings in V(4)

q will be considered
for the rest of the analysis.

A complete and independent basis of flavon invariants,
consistent with their transformation properties as shown in
Table 1, is given by the following operators

AU = Tr
(
�YU�Y†

U

)
,

AD = Tr
(
�YD�Y†

D

)
,

AUU = Tr
(
�YU�Y†

U�YU�Y†
U

)
,

ADD = Tr
(
�YD�Y†

D�YD�Y†
D

)
,

AUD = Tr
(
�YU�Y†

U�YD�Y†
D

)
,

BD = yDy
†
D , BDD = yD�Y†

D�YDy
†
D ,

DU = det (�YU ) .

(4.4)

Any other flavon invariant at the renormalisable level can be
constructed out of the ones in previous list.

123



Eur. Phys. J. C           (2020) 80:854 Page 15 of 23   854 

After the spontaneous breaking of the flavour symmetry,
these invariants can be expressed in terms of the physical
observables to be reproduced:

〈AU 〉 =�2
f

(
y2
u + y2

c

)
,

〈AD〉 =�2
f(
y2
d + y2

s + y2
b − y2

d |V31|2 − y2
s |V32|2 − y2

b |V33|2
)

,

〈AUU 〉 =�4
f

(
y4
u + y4

c

)
,

〈ADD〉 =�4
f

((
y2
d |V11|2 + y2

s |V12|2 + y2
b |V13|2

)2

+ (
y2
d |V21|2 + y2

s |V22|2 + y2
b |V23|2

)2

+ 2
(
y4
d |V11|2 |V21|2 + y4

s |V12|2 |V22|2
+y4

b |V13|2 |V23|2
))

,

〈AUD〉 =�4
f

(
y2
u

(
y2
d |V11|2 + y2

s |V12|2 + y2
b |V13|2

)

+y2
c

(
y2
d |V21|2 + y2

s |V22|2 + y2
b |V23|2

))
,

〈BD〉 =�2
f

(
y2
d |V31|2 + y2

s |V32|2 + y2
b |V33|2

)
,

〈BDD〉 =�4
f

(
y4
d |V31|2

(
1 − |V31|2

) + y4
s |V32|2(

1 − |V32|2
) + y4

b |V33|2
(
1 − |V33|2

))
,

〈DU 〉 =�2
f yu yc, (4.5)

where the unitarity of the CKM matrix has been exploited to
simplify some of the expressions.

The construction of the renormalisable flavon scalar
potential follows effortlessly after the introduction of the
invariants in Eq. (4.4):

V(4)
q =

∑
I=U,D

(−μ2
I AI + λI A

2
I

) − μ̃2
DBD + λ̃DB

2
D − μ̃2

U DU

+ λUU AUU + λDD ADD + λUD AUD + λ′
DDBDD

+ gUD AU AD + g̃U DDU BD + g′
UD AU BD

+ g′
DD ADBD + g′

UU AU DU + g′
DU ADDU , (4.6)

where
(∼)

λ
(′)
i and g(′)

i are O(1) parameters, while
(∼)
μi have

mass dimension 1 and are expected to be of the order of the
flavour scale � f . Note DU should appear along its hermitian
conjugate to preserve hermiticity, but has nonetheless been
omitted from the present discussion, as the parametrisation
in terms of physical observables for 〈�YU 〉 makes it real.
Moreover, D2

U has also been omitted, made redundant by the
addition of A2

U and AUU to the potential as a consequence
of the Cayley–Hamilton theorem [95,96]:

|det (�YU )|2

= 1

2

(
Tr

(
�YU�Y†

U

)2 − Tr
(
�YU�Y†

U�YU�Y†
U

))
.

(4.7)

4.1.1 Minimisation of the scalar potential

The use of the relations in Eq. (4.5) allows to determine the
position of the potential minima in terms of the physical
observables yu , yc, yd , ys , yb, θ

q
12, θ

q
23, θ

q
13 and δ

q
CP, the last

four being the standard CKM parameters. Then, the goal
of this section is to find, if existing, a combination of the

scalar potential parameters
(∼)

λ
(′)
i , g(′)

i and
(∼)
μ i , that allows

for a minimum to develop at the precise point of the nine-
dimensional space corresponding to the measured values for
the Yukawa couplings and CKM parameters.

The traditional procedure to identify the extreme points of
the scalar potential is performing its derivatives with respect
to the 9 observables yu , yc, yd , ys , yb, θ

q
12, θ

q
23, θ

q
13 and δ

q
CP.

However, the analysis results to be extremely cumbersome
due to the intricate dependencies on the observables within
the seventeen terms appearing in Eq. (4.6). The search for a
solution is further complicated by the fact that the observ-
ables span several orders of magnitude. For this reason, and
inspired by the helpfulness of the Wolfenstein parametrisa-
tion, an expansion in terms of the Cabibbo angle is imple-
mented: the idea is to move to a new set of observables, where
the hierarchies among the original physical parameters have
been factorised and parametrised by powers of the Cabibbo
angle:

yu = y′
u ε8 , yc = y′

c ε3 , yd = y′
d ε7 ,

ys = y′
s ε5 , yb = y′

b ε3 ,

V �
⎛
⎝

1 ϑc ε ϑb ε3

−ϑc ε 1 ϑa ε2

ϑb ε3 −ϑa ε2 1

⎞
⎠ ,

(4.8)

where ε � 0.225, and y′
i and ϑi are O(1) real parameters.

Due to the complexity of the analytical analysis, a simplified
three-parameter CKM parametrisation is employed, neglect-
ing the CP phase.

The minimisation of the scalar potential goes now through
the derivative of V(4)

q with respect to this new set of param-
eters. Explicit expressions for these derivatives are shown
below:

1

�4
f

∂V(4)
q

∂ϑa
= −2

μ2
D

�2
f

y′2
b ϑaε

10 + O(ε14) ,

1

�4
f

∂V(4)
q

∂ϑb
= −2

μ2
D

�2
f

y′2
b ϑbε

12 + O(ε18) ,

1

�4
f

∂V(4)
q

∂ϑc
= −2

μ2
D

�2
f

y′2
s ϑcε

12 + O(ε16) ,

1

�4
f

∂V(4)
q

∂y′
u

= − μ̃2
U

�2
f

y′
cε

11 + O(ε16) ,
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1

�4
f

∂V(4)
q

∂y′
d

= −2
μ2
D

�2
f

y′
dε

14 + O(ε16) ,

1

�4
f

∂V(4)
q

∂y′
s

= −2
μ2
D

�2
f

y′
sε

10 + O(ε12) ,

1

�4
f

∂V(4)
q

∂y′
c

= −2
μ2
U

�2
f

y′
cε

6 + O(ε11) ,

1

�4
f

∂V(4)
q

∂y′
b

= −2
μ̃2
D

�2
f

y′
bε

6 + O(ε10). (4.9)

Strictly implementing the naturalness criterium for the

parameters in the scalar potential,
(∼)

λ
(′)
i , g(′)

i and
(∼)
μ i/� f ,

leads to vanishing observables as the only solution to the
above equations. To find a non-trivial solution, the natural-
ness criterium needs to be (mildly) relaxed and the initial goal
of this section becomes now to identify the solution with the
least fine-tuning among the scalar potential parameters that
can reproduce masses and mixings in the quark sector.

Many different possibilities can be envisaged and one
example, which will be motivated below, is

μU = δμU ε3 , μ̃D = δμ̃D ε2 , μD = δμD ε3 , μ̃U = δμ̃U ε10 ,

λUU = −δλUU ε8 , g′
UD = −δg′

UDε3,
(4.10)

where δ
(∼)
μ i/� f and δλUU , δg′

UD, are expected to be O(1)

parameters. With this choice, the derivatives with respect to
y′
c and y′

b read

1

�4
f

∂V(4)
q

∂y′
c

∣∣∣∣∣
min

=
(

−2
δμ2

U

�2
f

y′
c + 4 λU y′3

c

)
ε12

+ O(ε15) = 0 ,

1

�4
f

∂V(4)
q

∂y′
b

∣∣∣∣∣
min

=
(

−2
δμ̃2

D

�2
f

y′
b + 4 λ̃D y′3

b ε

)
ε11

+ O(ε15) = 0.

(4.11)

Some structure appears now at leading order, allowing non-
trivial solutions for y′

c and y′
b:

y′
c � δμU/� f√

2 λU
y′
b � δμ̃D/� f√

2 ε λ̃D

. (4.12)

Remarkably, y′
c,b turn out to be O(1) parameters as

desired, coming however at the cost of tuning six of the
parameters in the potential.

This procedure could potentially be continued into higher
orders of the expansion, targeting the different parameters
in the scalar potential, aiming for solutions like those in
Eq. (4.12) for the remaining observables. However, it soon
becomes a daunting task due to the sheer amount of terms and
freedom available in the 17-dimensional parameter space. A
numerical analysis is better suited to deal with both of these
issues, and will therefore be used to explore the latter.

The numerical approach allows to effortlessly reparametrise
flavon VEVs to the best of the present experimental knowl-
edge:

yu = y′
u ε7.59 , yc = y′

c ε3.30 , yd = y′
d ε7.05 , ys = y′

s ε5.05 , yb = y′
b ε2.50,

V �
⎛
⎝

1 − ϑ2
c ε2/2 ϑc ε ϑa ϑ3

c A ε3 |ϑb ρ − iϑd η|
−ϑc ε 1 − ϑ2

c ε2/2 ϑa ϑ2
c A ε2

ϑa ϑ3
c A ε3 |1 − ϑbρ − iϑdη| −ϑa ϑ2

c A ε2 1

⎞
⎠ ,

(4.13)

where the whole set of Wolfenstein parameters has been
adopted [92], after the inclusion of the additional coefficient
ϑd .

To comb through the vast parameter space, a Monte Carlo
based approach is employed, randomly sampling different
sets of the parameters appearing in the scalar potential. Each
set is judged based on the proximity of the nearest minimum
to the point

(
y′
u, y

′
c, y

′
d , y

′
s, y

′
b, ϑa, ϑb, ϑc, ϑd

)

= (1, 1, 1, 1, 1, 1, 1, 1, 1) , (4.14)

which, after the new parametrisation, harbours the SM
flavour structure. The minimisation is carried by numerical
means, with bias towards minima with larger second deriva-
tives, indicative of better stability. With the structure of the
potential in Eq. (4.6), bounded-from-below, Mexican-hat like
one-dimensional cuts of the potential are expected for each
observable, whose minimum is required to lie at the point
described by Eq. (4.14).

Given available computation time, the parameter space is
explored only up to a certain degree of precision: it is not pos-
sible to claim every possible solution is found, nor the best
one; instead, it answers to the question of whether a desir-
able solution can be achieved, specifying the corresponding
necessary fine-tunings. In this situation, the distribution from
which the parameters are being randomly sampled becomes a
relevant matter, e.g. a flat distribution between [1,−1] would
bias the sampling of the quartic parameters towards non fine-
tuned values. To better explore the parameter space, other dis-
tributions, such as exponentials, have also been implemented
in combination.
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The best result found requires the enforcing of the follow-
ing hierarchies among the parameters of the scalar potential

μU = δμU ε3 , μ̃D = δμ̃D ε2 , μD = δμD ε3 , μ̃U = δμ̃U ε10 ,

λU = O (1) , λD = O (1) , λ̃D = O (1) ,

λUU = −δλUU ε8 , λDD = δλDD ε8 ,

λUD = δλUD ε10 , λ′
DD = δλ′

DD ε9 ,

gUD = O (1) , g′
UD = −δg′

UD ε3 , g′
DD = δg′

DD ε ,

g̃U D = δg̃U D ε16 , g′
UU = −δg′

UU ε15 , g′
DU = δg′

DU ε12,

(4.15)

where the suppression has been factorized in powers of ε so

that the fractions δ
(∼)
μ i/� f and quartic parameters δ

(∼)

λ
(′)
i and

δg(′)
i acquire O (1) values. Note this is also the set of param-

eters for which analytical solutions for y′
c and y′

b were shown
in Eq. (4.12). Although done for a simplified parametrisation,
it serves now as further consistency check.

The problem of dynamically generating the flavour struc-
ture of the flavon VEVs has a solution, albeit at the price
of fine-tuning among the parameters of the scalar potential,
Eq. (4.15). Small parameters may indicate that an additional
symmetry or mechanism should be at work in order to sup-
press the corresponding operators. If, for example,�YU were
charged under an Abelian U (1), then the determinant DU

would be forbidden, and consequently the parameters in the
last row of Eq. (4.15) and μ̃U , which are the most fine-tuned,
would not be present in the scalar potential. It is however
beyond the scope of this paper to investigate the possible
ultraviolet completion of the DDFM, and thus it will not be
further discussed.

The choice of the operators entering the scalar potential
in Eq. (4.6) is not uniquely determined up to quartic terms.
Indeed, the relation in Eq. (4.7) allows to pick just two out
of the three quartic operators that can be built out of up-type
flavons: A2

U , AUU and D2
U , the third made redundant by the

addition of the first two. Numerical solutions have also been
found for the two choices not shown in the text, requiring
similar levels of fine-tuning.

As a concluding remark, it is interesting to underline that
the DDFM, despite not providing a complete explanation for
the flavour puzzle, improves with respect to the MFV case. At
the renormalisable level and with minimal field content, i.e.
considering bi-fundamental flavons, the analysis within the
MFV framework leads to vanishing or undetermined mixing
angles and a single massive quark in the up and down sec-
tors. The situation is only slightly improved by the consider-
ation of non-renormalisable operators, which can provide a
degenerated mass for the lighter families, but the full pattern
of quark mass hierarchies and mixings is still far from being
achieved. This is in direct contrast to the solution provided by
the DDFM, which, already at the renormalisable level, can
provide a dynamical origin for the full flavour structure of the
quark sector, as long as suitable fine-tunings are enforced.

4.2 The lepton sector

Similarly to the quark sector, after promoting the spurions
to dynamical scalar fields, the leptonic Yukawa Lagrangian
turns out to be non-renormalisable and all its couplings get
suppressed by the cut-off scale � f :

−L �,MFC
Y = L̄ ′

L φ
�YE

� f
E ′
R + L̄ ′

L φ
yE
� f

τ ′
R

+ 1

2�LN

(
L̄ ′c
L φ̃

) g
ν

� f

(
φ̃T L ′

L

)
+ h.c. (4.16)

−L �,EFC
Y = 1

2
�LN N̄ ′c

R N ′
R + L̄ ′

L φ
�YE

� f
E ′
R

+ L̄ ′
L φ

yE
� f

τ ′
R + L̄ ′

L φ̃
Yν

� f
N ′
R + h.c. (4.17)

Once the flavour symmetry is broken then the flavons
develop VEVs as in Eqs. (2.10) and (2.16), for the MFC
and EFC cases respectively:

〈�YE 〉 ≡ � f �YE , 〈yE 〉 ≡ � f yE , 〈g
ν
〉 ≡ � f gν ,

〈Yν〉 ≡ � f Yν . (4.18)

The most general scalar potential includes terms written in
terms of only these flavons, terms that mix them and the SM
Higgs doublet, and terms that mix these flavons with those
in the quark sector. As discussed in the previous section, the
mixed SM Higgs-flavon terms are simply neglected to avoid
a severe fine-tuning problem in the EWSB sector. Moreover,
the mixed quark-lepton flavon terms are also neglected in
the analysis: only quartic terms can be constructed and they
may only affect fermion masses, not the mixings. Consis-
tently with what was done in the quark sector, only the scalar
potential at the renormalisable level V(4)

� will be retained in
the discussion that follows.

A complete and independent basis of flavon invariants in
the lepton sector for the MFC case is given by

AE = Tr
(
�YE�Y†

E

)
, Aν = Tr

(
g
ν
g†
ν

)
,

AEE = Tr
(
�YE�Y†

E�YE�Y†
E

)
, Aνν = Tr

(
g
ν
g†
ν
g
ν
g†
ν

)
,

AEν = Tr
(
�YE�Y†

E g†
ν
g
ν

)
,

BE = yEy
†
E , BEE = y†

E�YE�Y†
EyE , BEν = y†

E g†
ν
g
ν
yE ,

Dν = det
(
g
ν

)
. (4.19)

The Von Neumann’s trace inequality4 allows to extract
information on the unitary matrices that diagonalise the

4 The Von Neumann’s trace inequality states that for any n × n
complex matrices A and B, with singular values α1 ≤ α2 ≤ . . . ≤ αn
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flavon VEVs. The only relevant term providing informa-
tion on the mixing angles is AEν , and, being the charged
lepton flavon VEVs already diagonal and being the PMNS
matrix the diagonalising matrix of gν , the use of this inequal-
ity implies that only neutrino NO can be described, but that
no mixing is present in this case. It follows that for the MFC
case, it not possible to find values for the scalar potential
parameters that lead to Eq. (4.16) as a minimum.

The situation changes for the EFC scenario, and in this
case the complete list of independent invariants reads

AE = Tr
(
�YE�Y†

E

)
, Aν = Tr

(
Yν Y†

ν

)
,

AEE = Tr
(
�YE�Y†

E�YE�Y†
E

)
, Aνν1 = Tr

(
YνY†

νYνY†
ν

)
,

AEν = Tr
(
�YE�Y†

E YνY†
ν

)
, Aνν2 = Tr

(
YνYT

ν Y∗
νY†

ν

)
,

BE = yEy
†
E , BEE = y†

E�YE�Y†
EyE , BEν = y†

E YνY†
ν yE ,

Dν = det (Yν) .

(4.21)

After the spontaneous breaking of the flavour symmetry,
these invariants can be expressed in terms of the physical
observables as

〈AE 〉 =�2
f

(
y2
e + y2

μ

)

〈Aν〉 =�2
f

(
y2
ν1 + y2

ν2 + y2
ν3

)

〈AEE 〉 =�4
f

(
y4
e + y4

μ

)

〈Aνν1〉 =�4
f

(
y4
ν1 + y4

ν2 + y4
ν3

)

〈AEν〉 =�4
f Tr

(
diag

(
y2
e , y2

μ, 0
)
YνY

†
ν

)

〈Aνν2〉 =�4
f Tr

(
YνY

T
ν Y ∗

ν Y
†
ν

)

〈BE 〉 =�2
f y

2
τ

〈BEE 〉 =0

〈BEν〉 =�4
f (0, 0, yτ ) YνY

†
ν (0, 0, yτ )

T

〈Dν〉 =�3
f yν1yν2yν3,

(4.22)

where yν1, yν2 and yν3 are the eigenvalues of Yν . Notice that
the global phases eventually present in Yν are not physical
and can be redefined away. Moreover, the presence of the
invariant Aνν2 will lead to important consequences in the
analysis. The corresponding renormalisable scalar potential,
including only leptonic flavons, can be written as the sum of

Footnote 4 continued
and β1 ≤ β2 ≤ . . . ≤ βn respectively,

|Tr (AB)| ≤
n∑

i=1

αiβi . (4.20)

three different terms:

V(4)
� = V(4)

�1 + V(4)
�2 + V(4)

�3 , (4.23)

with

V(4)
�1 = −

(
μ2
E , μ2

ν, μ̃2
E

)
χ2 + χ2†λχ2 + λEE AEE

+ λνν Aνν1 + λ′
EE BEE − μ̃νDν

V(4)
�2 =ga AEν + gbBEν

V(4)
�3 =gc Aνν2,

(4.24)

where χ2 ≡ (AE , Aν, BE )T , λ is a 3 × 3 matrix of quartic

couplings, and λ
(′)
i and gi are O(1) parameters, while

(∼)
μi

have mass dimension 1 and are expected to be of the order
of the flavour scale � f .

4.2.1 Minimisation of the scalar potential

The term V(4)
�1 only deals with the eigenvalues of the flavon

VEVs, that is lepton masses, while V(4)
�2 and V(4)

�3 determine
the PMNS parameters. Charged lepton masses turn out to
be pretty similar to the quark masses, and a solution can be
found that reproduces the current experimental values. On the
other side, the presence of the Dν invariant and the fact that
the neutrinos belong to a triplet representation of SO(3)NR

determine a different prediction for the neutrino masses: in
particular, the eigenvalues of Yν turns out to be degenerate
in first approximation, yν1 � yν2 � yν3.

To analyse the second two parts of the leptonic potential,
the following parametrisation for Yν

Yν = ULdiag (yν1, yν2, yν3)UR, (4.25)

with yν1 ≤ yν2 ≤ yν3 and UL ,R two 3 × 3 unitary matrices,
turns out to be very useful. Indeed, V(4)

�2 only depends onUL ,

whileV(4)
�3 only depends on the combinationURUT

R . Depend-
ing on the sign of the couplings gi , the Von Neumann’s trace
inequality identifies the textures ofUL ,R matrices in the min-
imum of the scalar potential:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

UL =
⎛
⎜⎝

0 1 0

1 0 0

0 0 1

⎞
⎟⎠ for ga > 0

UL =
⎛
⎜⎝

0 1 0

0 0 1

1 0 0

⎞
⎟⎠ for ga < 0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

UL = U12(ϕ)

⎛
⎜⎝

0 0 1

0 1 0

1 0 0

⎞
⎟⎠ for gb > 0

UL = U12(ϕ) for gb < 0
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

URUT
R =

⎛
⎜⎝

0 0 1

0 1 0

1 0 0

⎞
⎟⎠ for gc > 0

URUT
R = 1 for gc < 0,

(4.26)

where U12(ϕ) is a rotation in the 1 − 2 sector of an angle
ϕ. These configurations minimise the associated term for the
two distinct values of the parameters gi . When considering
the full minimisation of the scalar potential, there are differ-
ent possible cases corresponding to the different relative signs
of the parameters gi . However, there is only one possibility
that may be phenomenologically viable and it occurs when
|ga| � |gb| and gc > 0. Although the texture of UL depends
on the sign of gb, the final neutrino mass matrix turns out to
be the same and therefore they are two equivalent physical
cases. The neutrino mass matrix reads

mν = Y ∗
ν Y

†
ν = v2

2�LN

⎛
⎝

y2
ν2 s

2 y2
ν2 sc yν1yν3 c

y2
ν2 sc y2

ν2 c
2 −yν1yν3 s

yν1yν3 c −yν1yν3 s 0

⎞
⎠ ,

(4.27)

where s and c stand for the sine and cosine of the angle
ϕ, respectively. The corresponding matrix of eigenvalues is
given by

m̂ν = v2

2�LN

⎛
⎝
y2
ν2 0 0
0 yν1yν3 0
0 0 yν1yν3

⎞
⎠ , (4.28)

that is phenomenological viable, given that y2
ν2 ∼ yν1yν3, as

the minimisation of V(4)
�1 suggests. Two PMNS matrices can

lead to the eigenvalues in Eq. (4.28):

U =
⎛
⎜⎝
s − c√

2
c√
2

c s√
2

− s√
2

0 1√
2

1√
2

⎞
⎟⎠ ·

⎛
⎝

1 0 0
0 ei

π
2 0

0 0 1

⎞
⎠ , (4.29)

or

U =
⎛
⎜⎝
s c√

2
− c√

2
c − s√

2
s√
2

0 1√
2

1√
2

⎞
⎟⎠ ·

⎛
⎝
ei

π
2 0 0

0 ei
π
2 0

0 0 1

⎞
⎠ , (4.30)

having removed any non-physical phase. The three mixing
angles can be found with the usual procedure in terms of the
elements of the PMNS matrix:

tan θ12 = U12/U11 , sin θ13 = U13 ,

tan θ23 = U23/U33. (4.31)

As the three angles depend on ϕ, it is interesting to look
at sin2 θi j as a function of the free parameter and look for
an agreement of all three angles with current experimental
bounds.

Fig. 4 Sine squared of the three PMNS mixing angles as a function of
the free parameter ϕ. The dashed lines show the experimental bounds at
3σ on each of the sines for NO. The bounds for IO are not perceptibly
different

In Fig. 4 the solid lines represent the exact prediction for
the angles as shown in Eq. (4.31). There is no value for ϕ

such that the three lines enter simultaneously their corre-
sponding experimental windows at 3σ . However, corrections
to the scalar potential may change the situation. First of all,
higher order invariants and radiative corrections may break
the degeneracy among the neutrino masses, allowing both
mass orderings. Such corrections, at the same time, may per-
turb the predictions of the angles in terms of ϕ: the shaded
regions in Fig. 4 represent this case, assuming that the cor-
rections preserve both the periodicity and amplitude of both
sin2 θ12 and sin2 θ13 while distorting only their shape. In this
case, compatibility with experiments at the 3σ level may be
achieved for four values of ϕ, roughly 63◦, 109◦, 246◦ and
292◦. Examples of higher dimensional invariants that may
modify spectrum and angles are

1

�2 Tr
(
YνYT

ν Y∗
νY†

ν �YE�Y†
E

)
,

1

�2 y
†
EYνYT

ν Y∗
νY†

ν yE , (4.32)

being � the scale at which NP generates these operators.
A relevant question concerns the size of the coefficients

accompanying operators like the above if they are to perturb
the solutions obtained from the renormalisable terms in a phe-
nomenologically realistic direction. As an illustrative exam-
ple, consider the effect that the addition of the second operator
in Eq. (4.32) has on the minimisation of the scalar potential
and refer to its dimensionless coefficient as g̃. The structure
of this operator depends on both UL and URUT

R . Whereas
the same UL identified in the renormalisable case that led
to a phenomenologically interesting scenario minimises the
non-renormalisable operator, the combinationURUT

R needed
to minimise this dimension 6 operator is different from that
needed for the renormalisable case.

This different combination of URUT
R induces a modifica-

tion in the neutrino mass matrix and in the PMNS matrix,
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Fig. 5 PMNS matrix resulting from the corrections induced by the
second operator in Eq. (4.32). A good agreement at a 3σ level can be
achieved for ϕ � 59◦ or ϕ � 239◦

labelled as δm̂ν and δU , whose strength will be parame-
terised by x = g̃/gc. Fixing x = 0.25, Fig. 5 shows the
angles of the perturbed PMNS matrix as a function of the
previous parameter ϕ. Comparing with Fig. 4, the agreement
with experimental bounds is greatly improved for two values
of ϕ, namely ϕ � 59◦ or ϕ � 239◦.

Besides x , there are two other parameters that affect the
agreement between the theory prediction and the experi-
mental data, that is the hierarchies among yνi : they can be
parametrised as n · yν1 = yν2 and m · yν1 = yν3, with m > n
both real and positive parameters. It is possible then to obtain
the mass splittings and sample the parameter space with ran-
dom values for x , n and m. Figure 6 shows the neutrino mass
splittings for the IO case. As it can be seen, it is possible to
stay within the 3σ range of both mass splittings with a value
of x that also provides for good mixing angles. Notice, how-
ever, that the dependence on all three parameters is remark-
ably strong and that this result is achieved assuming that the
scale of both mass splittings, which is v2y2

ν1/(2�LN ), is of
the order of eV (this is yet again another freedom to be tin-
kered with in order to reproduce the experimental range of
values).

The analysis here performed should be interpreted as an
example and an order of magnitude study, not as a search with
pinpoint accuracy, as that would require solving numerically
the lepton potential considering all the operators under inter-
est at the same time. The previous plots show, however, that
with a very simplistic approach it is possible to improve the
neutrino parameters produced by this model, so that the idea
of introducing non-renormalisable operators, with a strength
not too small and not too large compared to the renormalis-
able ones, succeeds in its task.

5 Conclusions

The Data Driven Flavour Model successfully provides almost
the same flavour protection of MFV and, at the same time, a
dynamical description for the flavour structure of the scalar
field VEVs. The basic idea is to strictly follow what data
says and construct a Yukawa Lagrangian where the top quark
coupling is renormalisable, while for the rest of fermions
they are not. In the specific case with three RH neutrinos that
give mass to the three active neutrinos through the Type-I
Seesaw mechanism, also the Majorana masses appear at the
renormalisable level.

Under this hypothesis, the flavour symmetry in the quark
case is SU (2)qL × SU (2)uR × SU (3)dR , with a 2+ 1 struc-
ture for the LH quarks and RH up quarks, while the RH down
quarks transform as a 3. In the minimal version of the lepton
sector, with active neutrino masses described by the Wein-
berg operator, the flavour symmetry is SU (3)�L × SU (2)eR ,
with the LH leptons transforming as a 3 and the RH leptons
with a structure 2 + 1. In the Seesaw case, the symmetry is
slightly more complicated and it is SU (3)�L × SU (2)eR ×
SO(3)NR , where the RH neutrinos transform as 3. Although
this assignment may seem purely arbitrary, it is compatible
with SU (5) GUT and therefore may arise from an underly-
ing theory where the flavour and gauge sectors may be even
more interconnected.

Fig. 6 Neutrino mass splittings resulting from the corrections induced
by the second operator in Eq. (4.32). Each point in the plot represents
a different set of random values for {x, n,m}. The 3σ range for �m21

appears as a thick line due to the represented range of values. The axes
are written in units of v2y2

ν1/(2�LN ) and the scale is eV
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The Yukawa Lagrangian is made formally invariant by the
introduction of 3 spurion fields in the quark sector and 3 in the
lepton sector. Once comparing with the MFV scenario, where
there are only 2 spurions in both the quark and lepton sectors
(in the latter, the most general case also needs 3 spurions, but
requiring predictivity one spurion can be removed), more
flavour violation may be expected in the DDFM, translating
in stronger bounds on the new physics scale �. However, this
is not the case: almost the same flavour protection of MFV is
present in the DDFM. The only difference is in the presence
of some decorrelations associated to the charged leptons: the
decay rates for Bs → μ+μ− and Bs → τ+τ− are predicted
to be exactly the same as in MFV, while they are independent
observables in the DDFM; similarly for B → K ∗μ+μ− and
B → K ∗τ+τ−. All in all, the strongest constrain comes
from the rare radiative decay of the B meson and from B →
Xs�

+�− that allow to put a lower bound on � of 6.1 TeV. In
the lepton sector, the results are very similar to MLFV, but
with small differences due to the decorrelation of observables
associated to the tau. These effects may be seen explicitly in
ratios of branching ratios of rare radiative decays.

Promoting the spurions to dynamical fields gives the pos-
sibility to shed some light on the possible dynamical origin
of the flavour structures responsible for the phenomenolog-
ical results of the DDFM. The analysis reveals that a min-
imum exists where all the masses and mixings can indeed
be described in agreement with data, but at the price of tun-
ing some parameters of the scalar potential. Moreover, pre-
cise predictions for the leptonic Dirac and Majorana phases
follow from the minimisation of the scalar potential: this is
a difference with the MLFV framework, where strictly CP
conserving phases are allowed and it results in very different
predictions for the neutrinoless-double-beta decay.

Although this may not be considered the ultimate solution
to the flavour puzzle, it represents a step ahead to achieve this
goal and a significant improvement with respect to MFV,
where only part of masses and mixing can be correctly
described.
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