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Entropy and canonical ensemble of hybrid quantum classical systems
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In this work we generalize and combine Gibbs and von Neumann approaches to build, for the first time, a
rigorous definition of entropy for hybrid quantum-classical systems. The resulting function coincides with the
two cases above when the suitable limits are considered. Then, we apply the MaxEnt principle for this hybrid
entropy function and obtain the natural candidate for the hybrid canonical ensemble (HCE). We prove that
the suitable classical and quantum limits of the HCE coincide with the usual classical and quantum canonical
ensembles since the whole scheme admits both limits, thus showing that the MaxEnt principle is applicable and
consistent for hybrid systems.

DOI: 10.1103/PhysRevE.102.042118

I. INTRODUCTION

Hybrid quantum-classical (QC) systems are the natural
approximation to those quantum systems containing some
degrees of freedom that can be well approximated as classical
variables. This possibility arises when there are two different
energy or mass scales, as it happens, for instance, in molecular
and condensed matter systems where the nuclei are heavy and
slow, while the electrons are light and fast. Hybrid models
have also been proposed to explain the measurement process
[1,2]: the measurement device is modeled as a classical system
coupled to the quantum system to be measured. In field theory,
hybrid quantum-classical systems have also been considered
as candidates to describe quantum matter fields interacting
with a (classical) gravitational field, as a semiclassical approx-
imation or even a fundamental theory (see Refs. [3,4]).

The correct mathematical formalism for the dynamics and
statistics of these hybrid models is not obvious. Two different
points of view can be taken. On the one hand, a practical
one: the construction of a hybrid theory that approximates,
as closely as possible, the full quantum dynamics of the
problem. Such methods can be applied to a very large array
of problems in condensed matter and molecular physics and
chemistry, as nonadiabatic processes play a fundamental role
[5–9]. On the other hand, a fundamental, theoretical point
of view: the construction of a mathematically and physically
consistent theory for hybrid systems, according to different
demands of consistency [1,10–27], independently of how well
it may approximate the full quantum dynamics. This second
approach is compulsory when the full quantum dynamics is
not known, as in the case of a system of quantum matter fields
interacting with gravity. In any case, it is not clear what is the
best possible dynamics from any of those two points of view.
Here, we assume the second one, and add to the discussion on

the construction of a mathematically consistent and physically
motivated hybrid theory.

The focus of this work is on the statistical mechanics of
hybrid systems, regardless of the dynamics chosen for their
description. In particular, we consider two open questions:
first, what is the correct definition of the entropy of a hybrid
system? And then, given this definition, can we use the Max-
Ent formalism and obtain the canonical ensemble of a hybrid
system, as we do for classical or quantum ones? Apparently,
these are purely fundamental questions, but their answers are
crucial for many applications, in particular, for the ab ini-
tio modeling of molecules and materials and their numerical
simulation methods at finite temperature (for example, see
Refs. [28–33]). We determine, in a simple way, the equilib-
rium ensemble that the numerical methods must reproduce
and the entropy function they must consider.

The structure of the paper is as follows. In Sec. II we
will first discuss the proper definition of the hybrid entropy
function. Then, in Sec. III we will derive the hybrid canoni-
cal ensemble (HCE) as the one that maximizes this entropy,
subject to the constraint of a given expectation value for the
energy (MaxEnt principle). The resulting ensemble had been
perhaps implicitly assumed before, but few times explicitly
spelled, and never, to our knowledge, derived from the gen-
eral principle of entropy maximization. We will also briefly
discuss some relevant properties of the resulting ensemble.

Finally, in Sec. IV we will summarize our main conclu-
sions.

II. THE ENTROPY OF A HYBRID QC SYSTEM

A correct statistical mechanical definition of any sys-
tem departs from the definition of a sample space: a set of
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statistically independent states, i.e., a basis of mutually exclu-
sive events (MEE), which can be unequivocally characterized
by the results of an experiment. Let us start by recalling the
basic definitions in the purely classical or purely quantum
cases.

In classical systems, a basis of MEEs is simply the phase
space MC , the set of all positions and momenta of the clas-
sical particles: MC = {(Q, P) | Q ∈ Rn, P ∈ Rn}, where n is
the number of classical degrees of freedom. Any point in this
phase space defines an exclusive event from any other event.
Observables are real functions on this MC . Statistical me-
chanics for classical systems can then be described by using
ensembles on this phase space, i.e., (generalized)1 probability
distribution functions (PDFs) FC

In quantum systems, the states are rays of a Hilbert space
H, i.e., the analogous to the classical phase space is the
projective space, MQ = PH. We will represent its points
as the projectors on 1-dimensional subspaces of the Hilbert
space ρ̂ψ = |ψ〉〈ψ |

〈ψ |ψ〉 , with |ψ〉 ∈ H \ {�0}. Even though all of the
states in MQ are physically legitimate, they are not mutually
exclusive. Indeed, if the system has been measured to be, with
probability one, in a state ρ̂ψ1 , the probability of measuring it
to be in other state ρ̂ψ2 is not zero, unless they are orthogonal:
ρ̂ψ1 , ρ̂ψ2 are MEE only if 〈ψ1 | ψ2〉 = 0. As a consequence,
considering generalized probability density functions FQ over
the Hilbert space (or over the projective space of rays) to
define ensembles, following the classical analogy, results in
overcounting the same outcome for a hypothetical experiment
in a nontrivial way. One way to see this clearly is that many
different FQ can correspond to exactly the same ensemble
(i.e., they are physically indistinguishable). The correct way
to get a sample space of MEEs is therefore considering a
basis of orthogonal events. From this idea, von Neumann [34]
derived the density matrix formalism, which contains all the
physically relevant statistically nonredundant information in a
compact way. A density matrix can be obtained from a PDF
FQ in the quantum state space as

ρ̂[FQ] =
∫

dμQ(ρ̂ψ )FQ(ρ̂ψ )ρ̂ψ , (1)

where we represent by dμQ the volume element on MQ.
Analogously, in the following, we will represent by dμC the
volume element on MC .

We move on now to QC theories. Despite the various
proposals referenced above, one can perhaps establish a
common denominator. The classical part is described by
a set of position Q ∈ Rn and momenta P ∈ Rn variables,
that we will hereafter collectively group as ξ = (Q, P). The
quantum part is described by a complex Hilbert space H.
Observables are Hermitian operators on H, and they may
depend parametrically on the classical variables, Â(ξ ) : H →
H. Those observables defined on the classical subsystem are
just ξ -functions times the identity, i.e., Â(ξ ) = A(ξ )Î; those
observables defined on the quantum subsystem only are oper-
ators that lack the ξ -dependence.

1We introduce the adjective generalized to refer to the set of gener-
alized functions (or distributions) and include, for instance, Dirac δ

functions.

We are going to consider two different approaches to the
definition of the entropy, one based on the usual approach to
classical systems, and another one inspired by the quantum
case.

A. A Gibbs-entropy for hybrid systems?

The formal similarities of one of the best known hybrid
dynamical models, Ehrenfest dynamics, with the classical one
(see Refs. [18,27] for details) may lead to consider hybrid sys-
tems as formally closer to classical than to quantum dynamics.
Indeed, Ehrenfest dynamics can be given a Hamiltonian struc-
ture (see Refs. [27,35]) in terms of

(1) a Hamiltonian function constructed as

fH (ξ, ρ̂ψ ) = Tr(Ĥ (ξ )ρ̂ψ ) = 〈ψ |Ĥ (ξ )ψ〉
〈ψ |ψ〉 , (2)

(2) and a Poisson bracket obtained as the combination of
the Poisson bracket of classical mechanics and the canonical
Poisson bracket of quantum systems (see Refs. [36,37]).

This fact makes Ehrenfest dynamical description of hy-
brid system formally analogous to a classical Hamiltonian
dynamical system. When considering the definition of hybrid
statistical systems, we can then consider a hybrid (general-
ized) PDF FH defined over the hybrid phase space MH =
MC × MQ, in an analogous manner to the definition of
classical statistical systems. The Hamiltonian nature of the
dynamics allows to define a Liouville equation for FH in a
straightforward manner (see Refs. [18,27]).

Within that framework, it is also tempting to borrow the
notion of entropy from classical statistical mechanics and de-
fine a Gibbs-like function associated with the density function
FH in the following form:

SG[FH] = −kB

∫
MH

dμH (ξ, ρψ )FH(ξ, ρψ ) log[FH(ξ, ρψ )],

(3)

where kB represents the Boltzman costant and dμH represents
the volume element on MH which can be written in terms of
the classical and quantum volume elements as dμH = dμC ∧
dμQ.

Notice that this entropy function is well defined for classi-
cal systems, where the points of phase-space correspond to
mutually exclusive events. Therefore, when considering SG

we are adding all points of the phase space MH as if they were
mutually exclusive. Thus, we treat them as classical statistical
systems, where being at a given point in phase space excludes
the possibility of being at a different point. Hence, we are
not weighting correctly the quantum subsystems from the
physical point of view, ruining the function ability to measure
physical information for the hybrid system.

Despite this fact, this entropy function has been implic-
itly assumed several times when considering hybrid or even
purely quantum statistical systems (see Refs. [27,38–40]),
when defining the so called Schrödinger-Gibbs (SG) ensemble
or the corresponding Schrödinger microcanonical ensemble.
Thus, SG represents a canonical ensemble where the proba-
bility density is written by assigning to each state the Gibbs
weight associated with the expectation value of the Hamil-
tonian, instead of the operator itself. But the bad physical
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properties of SG lead to very strange and un-physical prop-
erties for the corresponding thermodynamic functions. In
particular, this was the case when the Schrödinger-Gibbs en-
semble was analyzed in Ref. [41]. Nonetheless, notice that SG

is a mathematically consistent entropy function, despite the
unphysical properties of the Statistical Mechanics it defines.

B. Gibbs–von Neumann entropy

From our analysis above, it is clear that the straightfor-
ward extension of Gibbs classical entropy function to hybrid
systems leads to inconsistencies because the points of hybrid
phase space do not define mutually exclusive events as the
classical phase space points do. To do statistical mechanics
in a consistent way with the nature of its quantum subsys-
tem, one must reconsider the notion of mutually exclusive
events, and combine the classical and the quantum notions
of MEE. The combined hybrid phase space is now MH =
MC × MQ. But, we must consider that two hybrid states
(ξ1, ρ̂ψ1 ), (ξ2, ρ̂ψ2 ) ∈ MH represent MEEs if and only if ξ1 �=
ξ2 or 〈ψ1|ψ2〉 = 0.

The next step is to define a probability distribution on the
set of MEEs of MH . Following von Neumann idea and the
mathematical construction of Gleason theorem [42], we can
build a hybrid density matrix to represent the hybrid proba-
bility in a consistent way. As the physical properties of the
hybrid system, in general, combine the states of MC and MQ

(for instance, the total energy of the system), we cannot expect
both sets to be independent from the probabilistic point of
view. Nonetheless, we can assume that we can simultaneously
measure any classical observable and any hybrid observable
of the form Â(ξ ). This fact permits to define the conditional
probabilities p(a|ξ ): the probability of measuring an eigen-
value a of operator Â(ξ ), given that the classical subsystem
is at state ξ ∈ MC . The probabilities associated to the hy-
brid measurement can then be decomposed into the marginal
probability associated to the classical phase space, FC (ξ ), and
the conditional probabilities associated to the measurement of
Â(ξ ), given ξ :

p(a, ξ ) = FC(ξ )p(a|ξ ). (4)

For these quantum conditional probabilities p(a|ξ ), all
the requirements of Gleason’s theorem [42] apply, and one
may therefore define, at each ξ point, a density matrix ρ̂ξ .
It provides the probabilities of measuring an eigenvalue a
of observable Â(ξ ), given ξ , through the usual Born rule:
p(a|ξ ) = Tr[ρ̂ξ π̂a(ξ )], where π̂a(ξ ) is the projector onto the
eigen-subspace associated to a. From this, we can define the
hybrid density matrix as the ξ -dependent matrix:

ρ̂(ξ ) = FC(ξ )ρ̂ξ , (5)

such that p(a, ξ ) = Tr[ρ̂(ξ )π̂ (a)]. Notice that, strictly speak-
ing, Gleason theorem ensures the existence and uniqueness
of the density matrix ρ̂ξ only for Hilbert spaces of dimen-
sion at least 3. However, the recent developments based on
positive-operator-valued measures (POVM) (see, for instance,
Refs. [43,44]) allow to prove a more general formulation of
Gleason theorem for quantum states which is valid in di-
mension 2, but in that case the construction is not based on

orthogonality of the rank-one projectors but on a more global
set of effects.

In conclusion, the probability distribution on the set of
MEEs of hybrid states can be written as a family of quantum
density operators parameterized by the classical degrees of
freedom, ρ̂(ξ ). For each ξ , ρ̂(ξ ) is a self-adjoint and nonneg-
ative operator, which is normalized on the full hybrid sample
space: ∫

MC

dμC (ξ )Tr[ρ̂(ξ )] = 1. (6)

This is an immediate consequence of the normalization of
FC(ξ ) = Trρ̂(ξ ) [

∫
MC

dμC (ξ )FC(ξ ) = 1] and of ρ̂ξ (Trρ̂ξ =
1). Given a hybrid state determined by the classical point ξ

[which has probability Trρ̂(ξ )], and a quantum state repre-
sented by the projector π̂ , the probability of measuring the
system to be in that state is given by Tr[ρ̂(ξ )π̂]. These ξ -
dependent density matrices have already been used before,
for example, by Aleksandrov [25], or obtained by taking the
partial classical limit in the Wigner transformation of the full
quantum density matrix, in the quantum-classical Liouville
equation method [26].

Let us consider now how to define the entropy of these
hybrid states. For any bivariate distribution p(x, y) of two sets
of random variables (X , Y ), the entropy S(p) decomposes as

S(p) = S(pX ) +
∑

x

pX (x)S(pY |x ), (7)

where pX (x) = ∑
y p(x, y) is the marginal distribution of X ,

and pY |x is the conditional probability of Y given x. This gen-
eral result must be applicable to the decomposition Eqs. (4)
and (5). Therefore, the entropy of the hybrid system must be
equal to the sum of the (classical) entropy (SC) of the marginal
classical distribution FC(ξ ) and the average, over FC(ξ ), of the
(von Neumann) entropy associated to the conditional proba-
bility ρξ , i.e.,

S[ρ̂(ξ )] =

SC (FC )︷ ︸︸ ︷
−kB

∫
MC

dμC (ξ )FC(ξ ) log(FC(ξ ))

+
∫
MC

dμC (ξ )FC(ξ ) [−kBTr(ρ̂ξ log ρ̂ξ )]︸ ︷︷ ︸
SvN (ρ̂ξ )

. (8)

It is immediate then to rewrite this as

S[ρ̂(ξ )] = −kB

∫
MC

dμC (ξ ) Tr[ρ̂(ξ ) log ρ̂(ξ )], (9)

which is our proposal for the hybrid QC entropy. To the best of
our knowledge, this is the first rigorous proposal of an entropy
function for a hybrid quantum-classical system. If the classical
subsystem is pure [i.e., FC(ξ ) = δ(ξ − ξ0)], then the classi-
cal entropy vanishes and the entropy above reduces to von
Neumann entropy. Analogously, when the quantum state is
pure and independent of the classical state, the von Neumann
entropy of ρξ vanishes, and the expression above reduces to
the classical entropy function. Therefore, the entropy function
Eq. (9) combines the classical and quantum information in
a consistent way, and has the correct classical and quantum
limits.
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III. THE MAXENT PRINCIPLE FOR HYBRID
QC SYSTEMS

A. MaxEnt principle for the hybrid entropy function

The maximum entropy principle is one of the standard
procedures to derive the canonical ensemble at both the clas-
sical or the quantum level. First, one must assume that the
system is in equilibrium. Then, one can find the canonical
ensemble as the solution of the MaxEnt problem: given a
certain thermodynamic system and an entropy function S, find
the equilibrium ensemble which maximizes S among those
with a fixed value of the average energy E = 〈Ĥ (ξ )〉.

In the following, we will prove that the canonical ensemble
that results of this maximization, for the hybrid case, is given
by

ρ̂HCE(ξ ) = e−βĤ (ξ )

ZHCE(β )
, (10)

ZHCE(β ) =
∫
MC

dμC (ξ ) Tr(e−βĤ (ξ ) ), (11)

where Ĥ (ξ ) is the Hamiltonian [typically decomposed into a
classical and a quantum part, as f c

H (ξ )Î + ĤQ(ξ )], ZHCE(β )
is the partition function, and β is a constant, determined by
the choice of E , that is used to define the (inverse of the)
temperature. Note that this ensemble had been perhaps implic-
itly assumed before, but seldom explicitly written [45] and,
to our knowledge, never derived. Notice that the orthogonal
projectors of its spectral decomposition coincide with those
of the adiabatic basis.

The problem can be addressed as a constrained optimiza-
tion problem: find the density matrix that maximizes S in
Eq. (9), subject to the following constraints:

CN [ρ̂(ξ )] : =
∫
MC

dμC (ξ )Tr[ρ̂(ξ )] − 1 = 0, (12)

CE [ρ̂(ξ )] : =
∫
MC

dμC (ξ )Tr[ρ̂(ξ )Ĥ (ξ )] − E = 0. (13)

These can be incorporated via Lagrange multipliers, defining
the full optimization functional to be

S := S − λNCN − λECE . (14)

Without loss of generality, let us work in the (ξ -dependent)
basis of eigenstates of the Hamiltonian (the adiabatic basis).
First, we will consider the optimization over a reduced set of
density matrices: those which are diagonal in this adiabatic
basis. The terms in Eq. (14) then read

S[{ρii}] = −kB

∫
MC

dμC (ξ )
∑

i

ρii(ξ ) log(ρii(ξ ), (15)

CN [{ρii}] =
∫
MC

dμC (ξ )
∑

i

ρii(ξ ) − 1, (16)

CE [{ρii}] =
∫
MC

dμC (ξ )
∑

i

Hi(ξ )ρii(ξ ) − E . (17)

Taking derivatives and setting them to zero leads immediately
to

ρii(ξ ) = ZHCE(β )−1e−βHi (ξ ), (18)

where β = λE
kB

.

We consider now a general density matrix ˆ̃ρ(ξ ), whose
nondiagonal elements may be nonzero, fulfilling the two
constraint Eqs. (12) and (13). Since it is Hermitian with non-
negative eigenvalues, it satisfies Klein’s lemma [46]:

−Tr[ ˆ̃ρ(ξ ) log( ˆ̃ρ(ξ )] � −
∑

i

ρ̃ii(ξ ) log[ρ̃ii(ξ )], (19)

where ρ̃ii(ξ ) are its diagonal elements (the equality only holds
if it is actually diagonal). As the constraint Eqs. (12) and (13)
in the adiabatic basis only depend on the diagonal elements
of ρ̂(ξ ), we may conclude that for any nondiagonal density
matrix that fulfills the constraints there exists a diagonal one
(defined to be the one whose diagonal entries are the same)
that also fulfills the constraints and has a larger entropy. The
global maximum, therefore, has to be found among the diag-
onal ones, and is the one given in Eq. (18). This concludes the
proof.

B. Properties of the HCE

Let us now check that the ensemble thus defined fulfills
some very natural requirements:

(1) Additivity. If two systems are in the canonical ensem-
ble equilibrium at the same temperature, then they must also
be at equilibrium when we consider them to form a single sys-
tem with two (independent) subsystems. Extensive variables
as the energy and entropy must be additive.

This can be proven for the HCE in the following way. If
Ĥ1(ξ1) and Ĥ2(ξ2) are the Hamiltonians of both systems, then
the combined one is

Ĥ (ξ ) = Ĥ1(ξ1) ⊗ Î2 + Î1 ⊗ Ĥ2(ξ2), (20)

where ξ = (ξ1, ξ2).
As the two terms of Eq. (20) trivially commute,

e−βĤ (ξ ) = e−βĤ1(ξ1 ) ⊗ e−βĤ2(ξ2 ), (21)

and because of this,∫
MC1 ×MC2

dμC (ξ1, ξ2)Tr e−βĤ (ξ )

=
∫
MC1

dμC (ξ1)Tr e−βĤ1(ξ1 )
∫
MC2

dμC (ξ2)Tr e−βĤ2(ξ2 ).

(22)

Thus, we can just write

ρ̂(ξ ) = ρ̂1(ξ1) ⊗ ρ̂2(ξ2). (23)

This factorization of ρ̂(ξ ) immediately implies the additiv-
ity of the internal energy Eq. (13) and of the entropy Eq. (9).

(2) The classical canonical ensemble, which maximizes
Gibbs entropy, is recovered when only one quantum energy
state exists.

(3) The quantum canonical ensemble, which maximizes
von Neumann entropy, is recovered when only one classical
point is allowed.

(4) If the QC coupling is turned off (the quantum Hamil-
tonian ĤQ is independent of the classical variables and vice
versa), then the HCE becomes the product of the classical and
quantum canonical ensembles, which maximize the sum of
their respective entropies independently.
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C. Dynamics

Another extra condition that an equilibrium ensemble must
obviously verify is missing in the previous list: stationarity
under the dynamics of the microstates. However, up to now
we have disregarded the dynamics, and derived the canonical
ensemble from very broad assumptions, freed from dynamical
arguments. The dynamics is neither relevant for the definition
of the entropy function nor affects directly the solution of the
MaxEnt condition. For instance, MaxSG defines the MaxEnt
solution for the entropy function SG [Eq. (3)], independently
of the dynamics of the microstates we consider. The existence
of dynamics having it as an equilibrium point would be an
extra requirement for the definition of a thermodynamical
ensemble.

On the other hand, we also proved above that the MaxEnt
solution of the true hybrid entropy function Eq. (9) is the HCE.
This implies that the only possible ensemble which can be
considered to represent the canonical ensemble of a hybrid
system is the HCE. Is there a dynamics that makes it also
stationary? Trivially, the commutator with Ĥ (ξ ) (i.e., a gen-
eralized von Neumann equation) does, but many others may
also be possible. We will analyze this issue in a forthcoming
publication.

IV. CONCLUSIONS

It has been the purpose of this paper to shed some light
into the issue of the entropy and the canonical equilibrium
expression for hybrid systems. We have first discussed the
definition for the entropy of an ensemble of hybrid systems.

We have done it by making very general assumptions on the
hybrid theory, but without any consideration for the particular
dynamics. We have considered two different alternatives, one
based on probability densities on the hybrid phase space and
another based on projectors and the notion of hybrid mutually
exclusive events. The first case leads to a Gibbs-like function
which treats the hybrid system as a direct analog of a classical
system. We have shown how that entropy function assigns the
wrong weight to hybrid events and because of this fails to pro-
duce a physically meaningful Thermodynamics. The second
proposal departs from the information-theory definition of
entropy, and carefully considers the principle of mutually ex-
clusive events. The resulting hybrid entropy function weights
correctly the hybrid exclusive events and defines a physically
consistent thermodynamical entropy.

Then, we have derived the HCE as the one that fulfills the
MaxEnt principle with respect to the hybrid entropy function,
using it for the first time for hybrid quantum-classical systems.
Furthermore, we verified that the HCE reproduces the classi-
cal and quantum cases when the suitable limits are considered.
Hence, we can claim that the MaxEnt principle is applicable
and consistent for hybrid quantum-classical systems.
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