30 research outputs found

    Detection of relevant extracardiac findings on coronary computed tomography angiography vs. invasive coronary angiography

    Get PDF
    Objectives: To compare the detection of relevant extracardiac findings (ECFs) on coronary computed tomography angiography (CTA) and invasive coronary angiography (ICA) and evaluate the potential clinical benefit of their detection. Methods: This is the prespecified subanalysis of ECFs in patients presenting with a clinical indication for ICA based on atypical angina and suspected coronary artery disease (CAD) included in the prospective single-center randomized controlled Coronary Artery Disease Management (CAD-Man) study. ECFs requiring immediate therapy and/or further workup including additional imaging were defined as clinically relevant. We evaluated the scope of ECFs in 329 patients and analyzed the potential clinical benefit of their detection. Results: ECFs were detected in 107 of 329 patients (32.5%; CTA: 101/167, 60.5%; ICA: 6/162, 3.7%; p < .001). Fifty-nine patients had clinically relevant ECFs (17.9%; CTA: 55/167, 32.9%; ICA: 4/162, 2.5%; p < .001). In the CTA group, ECFs potentially explained atypical chest pain in 13 of 101 patients with ECFs (12.9%). After initiation of therapy, chest pain improved in 4 (4.0%) and resolved in 7 patients (6.9%). Follow-up imaging was recommended in 33 (10.0%; CTA: 30/167, 18.0%; ICA: 3/162, 1.9%) and additional clinic consultation in 26 patients (7.9%; CTA: 25/167, 15.0%; ICA: 1/162, 0.6%). Malignancy was newly diagnosed in one patient (0.3%; CTA: 1/167, 0.6%; ICA: 0). Conclusions: In this randomized study, CTA but not ICA detected clinically relevant ECFs that may point to possible other causes of chest pain in patients without CAD. Thus, CTA might preclude the need for ICA in those patients

    Comparative effectiveness of initial computed tomography and invasive coronary angiography in women and men with stable chest pain and suspected coronary artery disease: multicentre randomised trial

    Get PDF
    To assess the comparative effectiveness of computed tomography and invasive coronary angiography in women and men with stable chest pain suspected to be caused by coronary artery disease

    Methodologies for “Wiring” Redox Proteins/Enzymes to Electrode Surfaces

    Get PDF
    The immobilization of redox proteins or enzymes onto conductive surfaces has application in the analysis of biological processes, the fabrication of biosensors, and in the development of green technologies and biochemical synthetic approaches. This review evaluates the methods through which redox proteins can be attached to electrode surfaces in a “wired” configuration, that is, one that facilitates direct electron transfer. The feasibility of simple electroactive adsorption onto a range of electrode surfaces is illustrated, with a highlight on the recent advances that have been achieved in biotechnological device construction using carbon materials and metal oxides. The covalent crosslinking strategies commonly used for the modification and biofunctionalization of electrode surfaces are also evaluated. Recent innovations in harnessing chemical biology methods for electrically wiring redox biology to surfaces are emphasized

    ANTI-LOCK BRAKE SYSTEM

    Get PDF

    ANTI-LOCK BRAKE SYSTEM

    No full text

    Peroxide-Dependent Analyte Conversion by the Heme Prosthetic Group, the Heme Peptide “Microperoxidase-11” and Cytochrome c on Chitosan Capped Gold Nanoparticles Modified Electrodes

    No full text
    In view of the role ascribed to the peroxidatic activity of degradation products of cytochrome c (cyt c) in the processes of apoptosis, we investigate the catalytic potential of heme and of the cyt c derived heme peptide MP-11 to catalyse the cathodic reduction of hydrogen peroxide and to oxidize aromatic compounds. In order to check whether cyt c has an enzymatic activity in the native state where the protein matrix should suppress the inherent peroxidatic activity of its heme prosthetic group, we applied a biocompatible immobilization matrix and very low concentrations of the co-substrate H2O2. The biocatalysts were entrapped on the surface of a glassy carbon electrode in a biocompatible chitosan layer which contained gold nanoparticles. The electrochemical signal for the peroxide reduction is generated by the redox conversion of the heme group, whilst a reaction product of the substrate oxidation is cathodically reduced in the substrate indication. The catalytic efficiency of microperoxidase-11 is sufficient for sensors indicating HRP substrates, e.g., p-aminophenol, paracetamol and catechol, but also the hydroxylation of aniline and dehalogenation of 4-fluoroaniline. The lower limit of detection for p-aminophenol is comparable to previously published papers with different enzyme systems. The peroxidatic activity of cyt c immobilized in the chitosan layer for catechol was found to be below 1 per mill and for p-aminophenol about 3% as compared with that of heme or MP-11
    corecore