1,222 research outputs found

    Molecular hydrogen deficiency in HI-poor galaxies and its implications for star formation

    Full text link
    We use a sample of 47 homogeneous and high sensitivity CO images taken from the Nobeyama and BIMA surveys to demonstrate that, contrary to common belief, a significant number (~40%) of HI-deficient nearby spiral galaxies are also depleted in molecular hydrogen. While HI-deficiency by itself is not a sufficient condition for molecular gas depletion, we find that H2 reduction is associated with the removal of HI inside the galaxy optical disk. Those HI-deficient galaxies with normal H2 content have lost HI mainly from outside their optical disks, where the H2 content is low in all galaxies. This finding is consistent with theoretical models in which the molecular fraction in a galaxy is determined primarily by its gas column density. Our result is supported by indirect evidence that molecular deficient galaxies form stars at a lower rate or have dimmer far infrared fluxes than gas rich galaxies, as expected if the star formation rate is determined by the molecular hydrogen content. Our result is consistent with a scenario in which, when the atomic gas column density is lowered inside the optical disk below the critical value required to form molecular hydrogen and stars, spirals become quiescent and passive evolving systems. We speculate that this process would act on the time-scale set by the gas depletion rate and might be a first step for the transition between the blue and red sequence observed in the color-magnitude diagram.Comment: 12 pages, 9 figures, accepted for publication in Ap

    Kinematic Properties and Dark Matter Fraction of Virgo Dwarf Early-Type Galaxies

    Full text link
    What happens to dwarf galaxies as they enter the cluster potential well is one of the main unknowns in studies of galaxy evolution. Several evidence suggests that late-type galaxies enter the cluster and are transformed to dwarf early-type galaxies (dEs). We study the Virgo cluster to understand which mechanisms are involved in this transformation. We find that the dEs in the outer parts of Virgo have rotation curves with shapes and amplitudes similar to late-type galaxies of the same luminosity. These dEs are rotationally supported, have disky isophotes, and younger ages than those dEs in the center of Virgo, which are pressure supported, often have boxy isophotes and are older. Ram pressure stripping, thus, explains the properties of the dEs located in the outskirts of Virgo. However, the dEs in the central cluster regions, which have lost their angular momentum, must have suffered a more violent transformation. A combination of ram pressure stripping and harassment is not enough to remove the rotation and the spiral/disky structures of these galaxies. We find that on the the Faber-Jackson and the Fundamental Plane relations dEs deviate from the trends of massive elliptical galaxies towards the position of dark matter dominated systems such as the dwarf spheroidal satellites of the Milky Way and M31. Both, rotationally and pressure supported dEs, however, populate the same region in these diagrams. This indicates that dEs have a non-negligible dark matter fraction within their half light radius.Comment: Proceeding of the XXVIII IAU General Assembly, Special Session 3: Galaxy Evolution through Secular Processes. Edts: R. Buta and D. Pfennige

    1.65mic (H-band) surface photometry of galaxies. VI: The history of star formation in normal late-type galaxies

    Full text link
    We have collected a large body of NIR (H band), UV (2000 A) and Halpha measurements of late-type galaxies. These are used, jointly with spectral evolutionary synthesis models, to study the initial mass function (IMF) in the mass range m > 2 Mo. For spirals (Sa-Sd), Magellanic irregulars (Im) and blue compact dwarfs (BCD), our determination is consistent with a Salpeter IMF with an upper mass cutoff M_up = 80 Mo. The history of star formation and the amount of total gas (per unit mass) of galaxies are found to depend primarily on their total masses (as traced by the H band luminosities) and only secondarily on morphological type. The present star formation activity of massive spirals is up to 100 times smaller than that average over their lifetime, while in low mass galaxies it is comparable to or higher than that at earlier epochs. Dwarf galaxies have presently larger gas reservoirs per unit mass than massive spirals. The efficiency in transforming gas into stars and the time scale for gas depletion (10 Gyrs) are independent of the luminosity and/or of the morphological type. These evidences are consistent with the idea that galaxies are coeval systems,that they evolved as closed-boxes forming stars following a simple, universal star formation law whose characteristic time scale is small (1 Gyr) in massive spirals and large (10 Gyr) in low mass galaxies. A similar conclusion was drawn by Gavazzi and Scodeggio (1996) to explain the colour-magnitude relation of late-type galaxies. The consequences of this interpretation on the evolution of the star formation rate and of the gas density per comoving volume of the Universe with look-back time are discussed.Comment: LaTex, 24 pages, 12 figures, accepted for publication on Astronomical Journa

    Mid--IR emission of galaxies in the Virgo cluster: II. Integrated properties

    Get PDF
    We analyse the integrated properties of the Mid-IR emission of a complete, optically selected sample of galaxies in the Virgo cluster observed with the ISOCAM instrument on board the ISO satellite. The analysis shows that the Mid-IR emission up to 15 mic of optically-selected, normal early-type galaxies (E, S0 and S0a) is dominated by the Rayleigh-Jeans tail of the cold stellar component. The Mid-IR emission of late-type galaxies is instead dominated by the thermal emission from dust. The small dust grains emitting in the Mid-IR have an excess of emission if compared to big grains emitting in the Far-IR. While the Far-IR emission increases with the intensity of the interstellar radiation field, their Mid-IR emission is non--linearly related to the UV radiation field. The spectral energy distributions of the target galaxies indicate that there is a linear relationship between the UV radiation field and the Mid-IR emission of galaxies for low or intermediate activities of star formation, while the emission from the hot dust seems to drop for strong UV fields. The Mid-IR colour of late-type galaxies is not related to their activity of star formation. The properties of the dust emission in the Mid-IR seem more related to the mass than to the morphological type of the target galaxy. Since the activity of star formation is anticorrelated to the mass of galaxies, this reflects a relationship between the emission of dust in the Mid-IR and the UV radiation field: galaxies with the lowest Mid-IR emission for a given UV field are low mass, dwarf galaxies. These observational evidences are easily explained if the carriers of the Unidentified Infrared Bands that dominate the 6.75 mic emission are destroyed by the intense UV radiation field of dwarf galaxies, although abundance effects can also play a role.Comment: 17 pages, Latex, 7 figures; to be published in Astronomy & Astrophysics, Main Journal; Figure legend should be corrected in: 1 - 1a; 2 - 1b; 3 - 2; 4 - 3a; 5 - 3b; 6 - 3c; 7 - 3d; 8 - 3e; 9 - 4; 10 - 5; 11 - 6; 12 -

    Mid-IR emission of galaxies in the Virgo cluster and in the Coma supercluster.IV. The nature of the dust heating sources

    Full text link
    We study the relationship between the mid-IR (5-18 Ό\mum) emission of late-type galaxies and various other star formation tracers in order to investigate the nature of the dust heating sources in this spectral domain. The analysis is carried out using a sample of 123 normal, late-type, nearby galaxies with available data at several frequencies. The mid-IR luminosity (normalized to the H-band luminosity) correlates better with the far-IR luminosity than with more direct tracers of the young stellar population such as the Hα\alpha and the UV luminosity. The comparison of resolved images reveals a remarkable similarity in the Hα\alpha and mid-IR morphologies, with prominent HII regions at both frequencies. The mid-IR images, however, show in addition a diffuse emission not associated with HII regions nor with the diffuse Hα\alpha emission. This evidence indicates that the stellar population responsible for the heating of dust emitting in the mid-IR is similar to that heating big grains emitting in the far-IR, including relatively evolved stars responsible for the non-ionizing radiation. The scatter in the mid-IR vs. Hα\alpha, UV and far-IR luminosity relation is mostly due to metallicity effects, with metal-poor objects having a lower mid-IR emission per unit star formation rate than metal-rich galaxies. Our analysis indicates that the mid-IR luminosity is not an optimal star formation tracer in normal, late-type galaxies.Comment: accepted for publication on A&

    The GALEX Ultraviolet Virgo Cluster Survey (GUViCS). II. Constraints on star formation in ram-pressure stripped gas

    Get PDF
    Context: Several galaxies in the Virgo cluster are known to have large HI gas tails related to a recent ram-pressure stripping event. The Virgo cluster has been extensively observed at 1539 A in the far-ultraviolet for the GALEX Ultraviolet Virgo Cluster Survey (GUViCS), and in the optical for the Next Generation Virgo Survey (NGVS), allowing a study of the stellar emission potentially associated with the gas tails of 8 cluster members. On the theoretical side, models of ram-pressure stripping events have started to include the physics of star formation. Aim: We aim to provide quantitative constraints on the amount of star formation taking place in the ram-pressure stripped gas, mainly on the basis of the far-UV emission found in the GUViCS images in relation with the gas content of the tails. Methods: We have performed three comparisons of the young stars emission with the gas column density: visual, pixel-by-pixel and global. We have compared our results to other observational and theoretical studies. Results: We find that the level of star formation taking place in the gas stripped from galaxies by ram-pressure is low with respect to the available amount of gas. Star formation is lower by at least a factor 10 compared to the predictions of the Schmidt Law as determined in regular spiral galaxy disks. It is also lower than measured in dwarfs galaxies and the outer regions of spirals, and than predicted by some numerical simulations. We provide constraints on the star formation efficiency in the ram-pressure stripped gas tails, and compare these with current models.Comment: Accepted in A&A, 17 pages (including the appendix and "on-line" figures of the paper

    Multiple merging in the Abell cluster 1367

    Full text link
    We present a dynamical analysis of the central ~1.3 square degrees of the cluster of galaxies Abell 1367, based on 273 redshift measurements (of which 119 are news). From the analysis of the 146 confirmed cluster members we derive a significantly non-Gaussian velocity distribution, with a mean location C_{BI} = 6484+/-81 km/s and a scale S_{BI} = 891+/-58 km/s. The cluster appears elongated from the North-West to the South-East with two main density peaks associated with two substructures. The North-West subcluster is probably in the early phase of merging into the South-East substructure (~ 0.2 Gyr before core crossing). A dynamical study of the two subclouds points out the existence of a group of star-forming galaxies infalling into the core of the South-East subcloud and suggests that two other groups are infalling into the NW and SE subclusters respectively. These three subgroups contain a higher fraction of star-forming galaxies than the cluster core, as expected during merging events. Abell 1367 appears as a young cluster currently forming at the intersection of two filaments.Comment: 15 pages, 13 figures, 7 tables. Accepted for publication on A&A. High resolution figures at http://goldmine.mib.infn.it/papers/a1367.htm

    Molecular gas in late-type galaxies

    Full text link
    We present 12^{12}CO(J=1--0) line observations of 22 low-luminosity spiral galaxies in the Virgo cluster. These data, together with 244 others available in the literature, allow us to build a large sample that we use to study the molecular gas properties of galaxies spanning a large range of morphological types and luminosities and belonging to different environments (clusters - field). The molecular gas content of the target galaxies is estimated using a luminosity-dependent X = N(H2)/I(CO)N(H_2)/I(CO) conversion factor that has been calibrated on a sample of nearby galaxies. XX spans from ∌\sim 1020^{20} mol cm−2^{-2} (K km s−1)−1^{-1})^{-1} in giant spirals to ∌\sim 1021^{21} mol cm−2^{-2} (K km s−1)−1^{-1})^{-1} in dwarf irregulars. The value of the XX conversion factor is found consistent with a value derived independently from dust masses estimated from FIR fluxes, with a metallicity-dependent dust to gas ratio. The relationships between X and the UV radiation field (as traced by the Hα+[NII]E.W.H\alpha+[NII] E.W.), the metallicity and the H band luminosity are analysed. We show that the molecular gas contained in molecular clouds or complexes is of the order of 15% of the total gas on average whatever the luminosity or the Hubble type of the galaxies. We discuss the relation between the star formation rate and the molecular gas content and estimate the average star formation efficiency of late-type galaxies.Comment: accepted for publication on Astronomy and Astrophysic

    Non-linear Dependence of L(B) on L(FIR) and M(H2) among Spiral Galaxies and Effects of Tidal Interaction

    Get PDF
    Through the study of a carefully selected sample of isolated spiral galaxies, we have established that two important global physical quantities for tracing star forming activities, L(FIR) and M(H2), have non-linear dependence on another commonly cited global quantity L(B). Furthermore we show that simple power law relations can effectively describe these non-linear relations for spiral galaxies spanning four orders of magnitude in FIR and M(H2) and nearly three orders of magnitude in L(B). While the existence of non-linear dependence of M(H2) (assuming a constant CO-to-H2 conversion) and L(FIR) on optical luminosity L(B) has been previously noted in the literature, an improper normalization of simple scaling by L(B) has been commonly used in many previous studies to claim enhanced molecular gas content and induced activities among tidally interacting and other types of galaxies. We remove these non-linear effects using the template relations derived from the isolated galaxy sample and conclude that strongly interacting galaxies do not have enhanced molecular gas content, contrary to previous claims. With these non-linear relations among L(B), L(FIR) and M(H2) properly taken into account, we confirm again that the FIR emission and the star formation efficiency L(FIR)/M(H2) are indeed enhanced by tidal interactions. Virgo galaxies show the same level of M(H2) and L(FIR) as isolated galaxies. We do not find any evidence for enhanced star forming activity among barred galaxies.Comment: 19 pages and 5 figures, requires AAS style files, ApJ, accepte
    • 

    corecore