261 research outputs found

    Exploitation of drainage water heat: A novel solution experimented at the Brenner Base Tunnel

    Get PDF
    Deep tunnels in permeable fractured rock-masses and under high piezometric levels can drain notable volumes of warm water, which are collected under gravity in specific conduits towards the portals, where heat can be exploited. The utilization of this energy source is generally narrowed by the limited presence of end-users near the portals, while other promising heating and cooling needs can be found directly along the tunnel length. The work presents the design, construction and installation of a geothermal system prototype exploiting the drainage water heat directly inside the tunnel. The prototype was named Smart Flowing due to the peculiarity of its heat exchange process. The system was realized and installed inside the exploratory tunnel of the Brenner Base Tunnel, near the border between Italy and Austria. The Smart Flowing modules were built outside and later moved inside the tunnel, where they were placed and assembled concurrently to the advancement of the Tunnel Boring Machine. A design procedure was proposed and validated against a testing and monitoring campaign. The data from the experimental activity confirmed that the drainage water flow guarantees long-term stabilization of circulating water temperature and fast heat recovery afterwards, thus securing the considerable power and performance values of a water-water heat pump connected to the system. A sensitivity analysis allowed the reproduction of different working scenarios, in order to generalize the application of Smart Flowing beyond the specific installation context

    Tunnel–framed building interaction: comparison between raft and separate footing foundations

    Get PDF
    This paper investigates the influence of the foundation configuration (raft or separate footings) on tunnel-soil-framed building interaction using geotechnical centrifuge testing. Tunnelling-induced soil movements and deformation fields, framed building displacements, and structure shear distortions (with associated modification factors) are illustrated. Framed building stiffness and footing bearing capacity are also evaluated experimentally. Results show that the foundation configuration plays an important role in determining the ground response to tunnelling, affecting soil displacement fields as well as the distribution of soil shear and volumetric strains. In particular, foundation settlements and differential horizontal displacements are larger for separate footings compared to raft foundations. The effects of building width, weight, and eccentricity (with respect to the tunnel) on foundation settlements and structural distortions is quantified for separate footings and contrasted against results for raft foundations. The modification factor of the maximum building shear distortion is linked to the relative soil-building shear stiffness; interestingly, for buildings with similar values of relative stiffness, the level of shear distortion within framed buildings is lower for separate footings than rafts

    Tunneling-Induced Deformation of Bare Frame Structures on Sand: Numerical Study of Building Deformations

    Get PDF
    The paper compares the performance of two Finite Element Method approaches in reproducing the response of bare frame structures to tunneling in dry dense sand. A fully coupled approach, in which the tunnel, frame and soil are accounted for, is compared with a two-stage method incorporating simpler structural and soil models. The two approaches are validated against centrifuge test results of tunneling in sand beneath frames founded on either rafts or separate footings. Both approaches provide good estimates of displacements and distortions experienced by the frames provided that the soil-foundation interface and structural stiffness are correctly accounted for. The numerical models are also employed to extend the range of eccentric configurations investigated with centrifuge tests. The results demonstrate that shear deformations play an important role for all considered buildings, whereas only frames on separate footings are sensitive to horizontal ground movements. Finally, data are synthesized using modification factors and recently proposed relative stiffness terms

    Holmium laser enucleation of the prostate with Virtual Basket mode: faster and better control on bleeding

    Get PDF
    Background: To compare clinical intra and early postoperative outcomes between conventional Holmium laser enucleation of the prostate (HoLEP) and Holmium laser enucleation of the prostate using the Virtual Basket tool (VB-HoLEP) to treat benign prostatic hyperplasia (BPH). Methods: This prospective randomized study enrolled consecutive patients with BPH, who were assigned to undergo either HoLEP (n = 100), or VB-HoLEP (n = 100). All patients were evaluated preoperatively and postoperatively, with particular attention to catheterization time, operative time, blood loss, irrigation volume and hospital stay. We also evaluated the patients at 3 and 6 months after surgery and assessed maximum flow rate (Qmax), postvoid residual urine volume (PVR), the International Prostate Symptom Score (IPSS) and the Quality of Life score (QOLS). Results: No significant differences in preoperative parameters between patients in each study arm were found. Compared to HoLEP, VB-HoLEP resulted in less hemoglobin decrease (2.54 vs. 1.12 g/dl, P = 0.03) and reduced operative time (57.33 ± 29.71 vs. 42.99 ± 18.51 min, P = 0.04). HoLEP and VB-HoLEP detrmined similar catheterization time (2.2 vs. 1.9 days, P = 0.45), irrigation volume (33.3 vs. 31.7 l, P = 0.69), and hospital stay (2.8 vs. 2.7 days, P = 0.21). During the 6-month follow-up no significant differences in IPSS, Qmax, PVR, and QOLS were demonstrated. Conclusions: HoLEP and VB-HoLEP are both efficient and safe procedures for relieving lower urinary tract symptoms. VB-HoLEP was statistically superior to HoLEP in blood loss and operative time. However, procedures did not differ significantly in catheterization time, hospital stay, and irrigation volume. No significant differences were demonstrated in QOLS, IPSS, Qmax and PVR throughout the 6-month follow-up. Trial Registration: Current Controlled Trials ISRCTN72879639; date of registration: June 25th, 2015. Retrospectively registred

    Test and simulation of plastic scintillator strips readout by silicon photomultipliers

    Get PDF
    We studied the light collection in plastic scintillator strips, optimized for the detection of Minimum Ionizing Particles (MIPs). The light is collected by Wave Length Shifter (WLS) fibers and detected by Silicon Photo Multipliers (SiPMs). The study is based on prototypes developed for the muon detector of SuperB experiment. In parallel to measurement made on various type of geometries, a complete simulation suite, based on FLUKA, was developed. The simulation parameters were tuned by comparison with real data. In this way, we were able to study the effects of geometries and assembling procedures on light collection and provide a useful simulation tool for the design of future prototypes

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Performance and Operation of the CMS Electromagnetic Calorimeter

    Get PDF
    The operation and general performance of the CMS electromagnetic calorimeter using cosmic-ray muons are described. These muons were recorded after the closure of the CMS detector in late 2008. The calorimeter is made of lead tungstate crystals and the overall status of the 75848 channels corresponding to the barrel and endcap detectors is reported. The stability of crucial operational parameters, such as high voltage, temperature and electronic noise, is summarised and the performance of the light monitoring system is presented

    Multiple identities in decentralized Spain: The case of Catalonia

    Get PDF
    Publicado en Regional and Federal Studies, vol. 8, nº 3, 1998, pp. 65-88.The persistence of a dual self-identification expressed by citizens in the Spanish Comunidades Autónomas (nationalities and regions) is one of the main features of centre-periphery relations in democratic Spain. This 'dual identity' or 'compound nationality' incorporates -in variable proportions, individually or subjectively asserted- both state/national and ethnoterritorial identities with no apparent exclusion. It characterises the ambivalent and dynamic nature of spatial politics in decentralized Spain. A succinct review of the main developments in Spain's contemporary history is carried out in order to provide a background for the discussion of the various identities expressed by citizens in Catalonia. A segmentation analysis reviews the various forms of Catalan self-identification, among which ‘duality’ is to be underlined.Peer reviewe

    Calibration of the CMS Drift Tube Chambers and Measurement of the Drift Velocity with Cosmic Rays

    Get PDF
    Peer reviewe
    corecore