129 research outputs found

    Catholic Education in the 21st Century

    Get PDF
    Catholic schools have always served immigrant populations, minority groups, and the urban poor. Demographic shifts in society at large and in Catholic circles have precipitated changes in the mission and purpose of Catholic education. This article explores ways to both preserve and expand the historical mission of Catholic schools as we progress into a new century filled with technological advancements

    Exact procedures for solving the discrete ordered median problem

    Get PDF
    The Discrete Ordered Median Problem (DOMP) generalizes classical discrete location problems, such as the N-median, N-center and Uncapacitated Facility Location problems. It was introduced by Nickel [S. Nickel. Discrete Ordered Weber problems. In B. Fleischmann, R. Lasch, U. Derigs, W. Domschke, and U. Rieder, editors, Operations Research Proceedings 2000, pages 71–76. Springer, 2001], who formulated it as both a nonlinear and a linear integer program. We propose an alternative integer linear programming formulation for the DOMP, discuss relationships between both integer linear programming formulations, and show how properties of optimal solutions can be used to strengthen these formulations. Moreover, we present a specific branch and bound procedure to solve the DOMP more efficiently. We test the integer linear programming formulations and this branch and bound method computationally on randomly generated test problems.Ministerio de Ciencia y Tecnologí

    Overtreatment and associated risk factors among multimorbid older patients with diabetes.

    Get PDF
    BACKGROUND In multimorbid older patients with type 2 diabetes mellitus (T2DM), the intensity of glucose-lowering medication (GLM) should be focused on attaining a suitable level of glycated hemoglobin (HbA1c ) while avoiding side effects. We aimed at identifying patients with overtreatment of T2DM as well as associated risk factors. METHODS In a secondary analysis of a multicenter study of multimorbid older patients, we evaluated HbA1c levels among patients with T2DM. Patients were aged ≥70 years, with multimorbidity (≥3 chronic diagnoses) and polypharmacy (≥5 chronic medications), enrolled in four university medical centers across Europe (Belgium, Ireland, Netherlands, and Switzerland). We defined overtreatment as HbA1c  < 7.5% with ≥1 GLM other than metformin, as suggested by Choosing Wisely and used prevalence ratios (PRs) to evaluate risk factors of overtreatment in age- and sex-adjusted analyses. RESULTS Among the 564 patients with T2DM (median age 78 years, 39% women), mean ± standard deviation HbA1c was 7.2 ± 1.2%. Metformin (prevalence 51%) was the most frequently prescribed GLM and 199 (35%) patients were overtreated. The presence of severe renal impairment (PR 1.36, 1.21-1.53) and outpatient physician (other than general practitioner [GP], i.e. specialist) or emergency department visits (PR 1.22, 1.03-1.46 for 1-2 visits, and PR 1.35, 1.19-1.54 for ≥3 visits versus no visits) were associated with overtreatment. These factors remained associated with overtreatment in multivariable analyses. CONCLUSIONS In this multicountry study of multimorbid older patients with T2DM, more than one third were overtreated, highlighting the high prevalence of this problem. Careful balancing of benefits and risks in the choice of GLM may improve patient care, especially in the context of comorbidities such as severe renal impairment, and frequent non-GP healthcare contacts

    NSAIDs Modulate CDKN2A, TP53, and DNA Content Risk for Progression to Esophageal Adenocarcinoma

    Get PDF
    BACKGROUND: Somatic genetic CDKN2A, TP53, and DNA content abnormalities are common in many human cancers and their precursors, including esophageal adenocarcinoma (EA) and Barrett's esophagus (BE), conditions for which aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs) have been proposed as possible chemopreventive agents; however, little is known about the ability of a biomarker panel to predict progression to cancer nor how NSAID use may modulate progression. We aimed to evaluate somatic genetic abnormalities with NSAIDs as predictors of EA in a prospective cohort study of patients with BE. METHODS AND FINDINGS: Esophageal biopsies from 243 patients with BE were evaluated at baseline for TP53 and CDKN2A (p16) alterations, tetraploidy, and aneuploidy using sequencing; loss of heterozygosity (LOH); methylation-specific PCR; and flow cytometry. At 10 y, all abnormalities, except CDKN2A mutation and methylation, contributed to EA risk significantly by univariate analysis, ranging from 17p LOH (relative risk [RR] = 10.6; 95% confidence interval [CI] 5.2–21.3, p < 0.001) to 9p LOH (RR = 2.6; 95% CI 1.1–6.0, p = 0.03). A panel of abnormalities including 17p LOH, DNA content tetraploidy and aneuploidy, and 9p LOH was the best predictor of EA (RR = 38.7; 95% CI 10.8–138.5, p < 0.001). Patients with no baseline abnormality had a 12% 10-y cumulative EA incidence, whereas patients with 17p LOH, DNA content abnormalities, and 9p LOH had at least a 79.1% 10-y EA incidence. In patients with zero, one, two, or three baseline panel abnormalities, there was a significant trend toward EA risk reduction among NSAID users compared to nonusers (p = 0.01). The strongest protective effect was seen in participants with multiple genetic abnormalities, with NSAID nonusers having an observed 10-y EA risk of 79%, compared to 30% for NSAID users (p < 0.001). CONCLUSIONS: A combination of 17p LOH, 9p LOH, and DNA content abnormalities provided better EA risk prediction than any single TP53, CDKN2A, or DNA content lesion alone. NSAIDs are associated with reduced EA risk, especially in patients with multiple high-risk molecular abnormalities

    Azithromycin resistance in Escherichia coli and Salmonella from food-producing animals and meat in Europe.

    Get PDF
    OBJECTIVES To characterize the genetic basis of azithromycin resistance in Escherichia coli and Salmonella collected within the EU harmonized antimicrobial resistance (AMR) surveillance programme in 2014-18 and the Danish AMR surveillance programme in 2016-19. METHODS WGS data of 1007 E. coli [165 azithromycin resistant (MIC > 16 mg/L)] and 269 Salmonella [29 azithromycin resistant (MIC > 16 mg/L)] were screened for acquired macrolide resistance genes and mutations in rplDV, 23S rRNA and acrB genes using ResFinder v4.0, AMRFinder Plus and custom scripts. Genotype-phenotype concordance was determined for all isolates. Transferability of mef(C)-mph(G)-carrying plasmids was assessed by conjugation experiments. RESULTS mph(A), mph(B), mef(B), erm(B) and mef(C)-mph(G) were detected in E. coli and Salmonella, whereas erm(C), erm(42), ere(A) and mph(E)-msr(E) were detected in E. coli only. The presence of macrolide resistance genes, alone or in combination, was concordant with the azithromycin-resistant phenotype in 69% of isolates. Distinct mph(A) operon structures were observed in azithromycin-susceptible (n = 50) and -resistant (n = 136) isolates. mef(C)-mph(G) were detected in porcine and bovine E. coli and in porcine Salmonella enterica serovar Derby and Salmonella enterica 1,4, [5],12:i:-, flanked downstream by ISCR2 or TnAs1 and associated with IncIγ and IncFII plasmids. CONCLUSIONS Diverse azithromycin resistance genes were detected in E. coli and Salmonella from food-producing animals and meat in Europe. Azithromycin resistance genes mef(C)-mph(G) and erm(42) appear to be emerging primarily in porcine E. coli isolates. The identification of distinct mph(A) operon structures in susceptible and resistant isolates increases the predictive power of WGS-based methods for in silico detection of azithromycin resistance in Enterobacterales

    The Genome of a Pathogenic Rhodococcus: Cooptive Virulence Underpinned by Key Gene Acquisitions

    Get PDF
    We report the genome of the facultative intracellular parasite Rhodococcus equi, the only animal pathogen within the biotechnologically important actinobacterial genus Rhodococcus. The 5.0-Mb R. equi 103S genome is significantly smaller than those of environmental rhodococci. This is due to genome expansion in nonpathogenic species, via a linear gain of paralogous genes and an accelerated genetic flux, rather than reductive evolution in R. equi. The 103S genome lacks the extensive catabolic and secondary metabolic complement of environmental rhodococci, and it displays unique adaptations for host colonization and competition in the short-chain fatty acid–rich intestine and manure of herbivores—two main R. equi reservoirs. Except for a few horizontally acquired (HGT) pathogenicity loci, including a cytoadhesive pilus determinant (rpl) and the virulence plasmid vap pathogenicity island (PAI) required for intramacrophage survival, most of the potential virulence-associated genes identified in R. equi are conserved in environmental rhodococci or have homologs in nonpathogenic Actinobacteria. This suggests a mechanism of virulence evolution based on the cooption of existing core actinobacterial traits, triggered by key host niche–adaptive HGT events. We tested this hypothesis by investigating R. equi virulence plasmid-chromosome crosstalk, by global transcription profiling and expression network analysis. Two chromosomal genes conserved in environmental rhodococci, encoding putative chorismate mutase and anthranilate synthase enzymes involved in aromatic amino acid biosynthesis, were strongly coregulated with vap PAI virulence genes and required for optimal proliferation in macrophages. The regulatory integration of chromosomal metabolic genes under the control of the HGT–acquired plasmid PAI is thus an important element in the cooptive virulence of R. equi

    Children must be protected from the tobacco industry's marketing tactics.

    Get PDF
    corecore