453 research outputs found

    Shallow Water Bathymetry Mapping from UAV Imagery based on Machine Learning

    Get PDF
    The determination of accurate bathymetric information is a key element for near offshore activities, hydrological studies such as coastal engineering applications, sedimentary processes, hydrographic surveying as well as archaeological mapping and biological research. UAV imagery processed with Structure from Motion (SfM) and Multi View Stereo (MVS) techniques can provide a low-cost alternative to established shallow seabed mapping techniques offering as well the important visual information. Nevertheless, water refraction poses significant challenges on depth determination. Till now, this problem has been addressed through customized image-based refraction correction algorithms or by modifying the collinearity equation. In this paper, in order to overcome the water refraction errors, we employ machine learning tools that are able to learn the systematic underestimation of the estimated depths. In the proposed approach, based on known depth observations from bathymetric LiDAR surveys, an SVR model was developed able to estimate more accurately the real depths of point clouds derived from SfM-MVS procedures. Experimental results over two test sites along with the performed quantitative validation indicated the high potential of the developed approach.Comment: 8 pages, 9 figure

    A Fourth Amendment Problem with Probation in North Carolina

    Get PDF

    Fast Algorithms for Energy Games in Special Cases

    Full text link
    In this paper, we study algorithms for special cases of energy games, a class of turn-based games on graphs that show up in the quantitative analysis of reactive systems. In an energy game, the vertices of a weighted directed graph belong either to Alice or to Bob. A token is moved to a next vertex by the player controlling its current location, and its energy is changed by the weight of the edge. Given a fixed starting vertex and initial energy, Alice wins the game if the energy of the token remains nonnegative at every moment. If the energy goes below zero at some point, then Bob wins. The problem of determining the winner in an energy game lies in NPcoNP\mathsf{NP} \cap \mathsf{coNP}. It is a long standing open problem whether a polynomial time algorithm for this problem exists. We devise new algorithms for three special cases of the problem. The first two results focus on the single-player version, where either Alice or Bob controls the whole game graph. We develop an O~(nωWω)\tilde{O}(n^\omega W^\omega) time algorithm for a game graph controlled by Alice, by providing a reduction to the All-Pairs Nonnegative Prefix Paths problem (APNP), where WW is the maximum weight and ω\omega is the best exponent for matrix multiplication. Thus we study the APNP problem separately, for which we develop an O~(nωWω)\tilde{O}(n^\omega W^\omega) time algorithm. For both problems, we improve over the state of the art of O~(mn)\tilde O(mn) for small WW. For the APNP problem, we also provide a conditional lower bound, which states that there is no O(n3ϵ)O(n^{3-\epsilon}) time algorithm for any ϵ>0\epsilon > 0, unless the APSP Hypothesis fails. For a game graph controlled by Bob, we obtain a near-linear time algorithm. Regarding our third result, we present a variant of the value iteration algorithm, and we prove that it gives an O(mn)O(mn) time algorithm for game graphs without negative cycles

    Computing Smallest Convex Intersecting Polygons

    Get PDF
    Funding Information: Funding Mark de Berg is supported by the Dutch Research Council (NWO) through Gravitation-grant NETWORKS-024.002.003. Antonis Skarlatos: Part of the work was done during an internship at the Max Planck Institute for Informatics in Saarbrücken, Germany. Publisher Copyright: © 2022 Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. All rights reserved.A polygon C is an intersecting polygon for a set O of objects in R2 if C intersects each object in O, where the polygon includes its interior. We study the problem of computing the minimum-perimeter intersecting polygon and the minimum-area convex intersecting polygon for a given set O of objects. We present an FPTAS for both problems for the case where O is a set of possibly intersecting convex polygons in the plane of total complexity n. Furthermore, we present an exact polynomial-time algorithm for the minimum-perimeter intersecting polygon for the case where O is a set of n possibly intersecting segments in the plane. So far, polynomial-time exact algorithms were only known for the minimum perimeter intersecting polygon of lines or of disjoint segments.Peer reviewe

    MODELLING COLOUR ABSORPTION OF UNDERWATER IMAGES USING SFM-MVS GENERATED DEPTH MAPS

    Get PDF
    Abstract. The problem of colour correction of underwater images concerns not only surveyors, who primarily use images for photogrammetric purposes, but also archaeologists, marine biologists, and many other domains experts whose aim is to study objects and lifeforms underwater. Different methods exist in the literature; some of them provide outstanding results but works involving physical models that take into account additional information and variables (light conditions, depths, camera to objects distances, water properties) that are not always available or can be measured using expensive equipment or calculated using more complicated models. Some other methods have the advantages of working with basically all kinds of dataset, but without considering any geometric information, therefore applying corrections that work only in very generic conditions that most of the time differs from the real-world applications.This paper presents an easy and fast method for restoring the colour information on images captured underwater. The compelling idea is to model light backscattering and absorption variation according to the distance of the surveyed object. This information is always obtainable in photogrammetric datasets, as the model utilises the scene's 3D geometry by creating and using SfM-MVS generated depth maps, which are crucial for implementing the proposed methodology. The results presented visually and quantitatively are promising since they are an excellent compromise to provide a straightforward and easily adaptable workflow to restore the colour information in underwater images

    Bootstrapping Dynamic Distance Oracles

    Get PDF

    Opportunistic power reassignment between processor and memory in 3D stacks

    Get PDF
    The pin count largely determines the cost of a chip package, which is often comparable to the cost of a die. In 3D processor-memory designs, power and ground (P/G) pins can account for the majority of the pins. This is because packages include separate pins for the disjoint processor and memory power delivery networks (PDNs). Supporting separate PDNs and P/G pins for processor and memory is inefficient, as each set has to be provisioned for the worst-case power delivery requirements. In this thesis, we propose to reduce the number of P/G pins of both processor and memory in a 3D design, and dynamically and opportunistically divert some power between the two PDNs on demand. To perform the power transfer, we use a small bidirectional on-chip voltage regulator that connects the two PDNs. Our concept, called Snatch, is effective. It allows the computer to execute code sections with high processor or memory power requirements without having to throttle performance. We evaluate Snatch with simulations of an 8-core multicore stacked with two memory dies. In a set of compute-intensive codes, the processor snatches memory power for 30% of the time on average, speeding-up the codes by up to 23% over advanced turbo-boosting; in memory-intensive codes, the memory snatches processor power. Alternatively, Snatch can reduce the package cost by about 30%

    Dynamic algorithms for k-center on graphs

    Full text link
    In this paper we give the first efficient algorithms for the kk-center problem on dynamic graphs undergoing edge updates. In this problem, the goal is to partition the input into kk sets by choosing kk centers such that the maximum distance from any data point to the closest center is minimized. It is known that it is NP-hard to get a better than 22 approximation for this problem. While in many applications the input may naturally be modeled as a graph, all prior works on kk-center problem in dynamic settings are on metrics. In this paper, we give a deterministic decremental (2+ϵ)(2+\epsilon)-approximation algorithm and a randomized incremental (4+ϵ)(4+\epsilon)-approximation algorithm, both with amortized update time kno(1)kn^{o(1)} for weighted graphs. Moreover, we show a reduction that leads to a fully dynamic (2+ϵ)(2+\epsilon)-approximation algorithm for the kk-center problem, with worst-case update time that is within a factor kk of the state-of-the-art upper bound for maintaining (1+ϵ)(1+\epsilon)-approximate single-source distances in graphs. Matching this bound is a natural goalpost because the approximate distances of each vertex to its center can be used to maintain a (2+ϵ)(2+\epsilon)-approximation of the graph diameter and the fastest known algorithms for such a diameter approximation also rely on maintaining approximate single-source distances
    corecore