87 research outputs found

    Model-based classification for subcellular localization prediction of proteins

    Get PDF

    Bayesian network models for inferring cancer pathogenetic and gene pathways

    Get PDF

    Predicting protein subcellular locations using hierarchical ensemble of Bayesian classifiers based on Markov chains

    Get PDF
    BACKGROUND: The subcellular location of a protein is closely related to its function. It would be worthwhile to develop a method to predict the subcellular location for a given protein when only the amino acid sequence of the protein is known. Although many efforts have been made to predict subcellular location from sequence information only, there is the need for further research to improve the accuracy of prediction. RESULTS: A novel method called HensBC is introduced to predict protein subcellular location. HensBC is a recursive algorithm which constructs a hierarchical ensemble of classifiers. The classifiers used are Bayesian classifiers based on Markov chain models. We tested our method on six various datasets; among them are Gram-negative bacteria dataset, data for discriminating outer membrane proteins and apoptosis proteins dataset. We observed that our method can predict the subcellular location with high accuracy. Another advantage of the proposed method is that it can improve the accuracy of the prediction of some classes with few sequences in training and is therefore useful for datasets with imbalanced distribution of classes. CONCLUSION: This study introduces an algorithm which uses only the primary sequence of a protein to predict its subcellular location. The proposed recursive scheme represents an interesting methodology for learning and combining classifiers. The method is computationally efficient and competitive with the previously reported approaches in terms of prediction accuracies as empirical results indicate. The code for the software is available upon request

    New Insights into the Genetic Regulation of Plasmodium Falciparum Obtained by Bayesian Modeling

    Get PDF
    The most fatal and prevalent form of malaria is caused by the bloodborne pathogen Plasmodium falciparum (henceforth P.f). Annually, approximately three million people died of malaria. Despite P.f devastivating effect globally, the vast majority of its proteins have not been characterized experimentally. In this work, we provide computational insight that explore the modalities of the regulation for some important group of genes of P.f, namely components of the glycolytic pathway, and those involved in apicoplast metabolism. Glycolysis is a crucial pathway in the maintenance of the parasite while the recently discovered apicoplast contains a range of metabolic pathways and housekeeping processes that differ radically to those of the host, which makes it ideal for drug therapy

    Control of the specificity of T cell-mediated anti-idiotype immunity by natural regulatory T cells

    Get PDF
    The idiotypes of B cell lymphomas represent tumor-specific antigens. T cell responses induced by idiotype vaccination in vivo are directed predominantly against CDR peptides, whereas in vitro T cells also recognize framework-derived epitopes. To investigate the mechanisms regulating the specificity of idiotype-specific T cells, BALB/c or B10.D2 mice were immunized with mature dendritic cells loaded with H-2Kd-restricted peptides from influenza hemagglutinin, or from shared (J region) or unique (CDR3) structures of the A20 lymphoma idiotype. Antigen-specific T cells were induced in vivo by the CDR3 and influenza epitopes, but not by the J peptide. Gene expression profiling of splenic regulatory T cells revealed vaccination-induced Treg activation and proliferation. Treg activity involved J epitope-dependent IL-10 secretion and functional suppression of peptide-specific effector T cells. Vaccination-induced in vivo proliferation of transgenic hemagglutinin-specific T cells was suppressed by co-immunization with the J peptide and was restored in CD25-depleted animals. In conclusion, Treg induced by a shared idiotype epitope can systemically suppress T cell responses against idiotype-derived and immunodominant foreign epitopes in vivo. The results imply that tumor vaccines should avoid epitopes expressed by normal cells in the draining lymph node to achieve optimal anti-tumor efficacy

    Rechtliche Aspekte von Sterben und Tod

    Full text link
    Tables S1-S8. Demonstrating genes from the groups A-H and their functional annotations. (PDF 63 kb

    Assessing the Functional Relevance of Variants in the IKAROS Family Zinc Finger Protein 1 (IKZF1) in a Cohort of Patients With Primary Immunodeficiency

    Get PDF
    Common variable immunodeficiency (CVID) is the most frequent symptomatic primary immunodeficiency. Patients with CVID are prone to recurrent bacterial infection due to the failure of adequate immunoglobulin production. Monogenetic defects have been identified in ~25% of CVID patients. Recently, mutations in IKZF1, encoding the zinc-finger transcription factor IKAROS which is broadly expressed in hematopoietic cells, have been associated with a CVID-like phenotype. Herein we describe 11 patients with heterozygous IKZF1 variants from eight different families with autosomal dominant CVID and two siblings with an IKZF1 variant presenting with inflammatory bowel disease (IBD). This study shows that mutations affecting the DNA binding domain of IKAROS can impair the interaction with the target DNA sequence thereby preventing heterochromatin and pericentromeric localization (HC-PC) of the protein. Our results also indicate an impairment of pericentromeric localization of IKAROS by overexpression of a truncated variant, caused by an immature stop codon in IKZF1. We also describe an additional variant in TNFSF10, encoding Tumor Necrosis Factor Related Apoptosis Inducing Ligand (TRAIL), additionally presented in individuals of Family A. Our results indicate that this variant may impair the TRAIL-induced apoptosis in target cell lines and prohibit the NFκB activation by TRAIL and may act as a modifier in Family A.Fil: Eskandarian, Zoya. Albert Ludwigs University of Freiburg; AlemaniaFil: Fliegauf, Manfred. Albert Ludwigs University of Freiburg; AlemaniaFil: Bulashevska, Alla. Albert Ludwigs University of Freiburg; AlemaniaFil: Proietti, Michele. Albert Ludwigs University of Freiburg; AlemaniaFil: Hague, Rosie. Royal Hospital For Children; Reino UnidoFil: Smulski, Cristian Roberto. Albert Ludwigs University of Freiburg; Alemania. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Schubert, Desirée. Albert Ludwigs University of Freiburg; AlemaniaFil: Warnatz, Klaus. Albert Ludwigs University of Freiburg; AlemaniaFil: Grimbacher, Bodo. Albert Ludwigs University of Freiburg; Alemania. University College London; Reino Unid

    Altered Microbiota, Impaired Quality of Life, Malabsorption, Infection, and Inflammation in CVID Patients With Diarrhoea

    Get PDF
    © Copyright © 2020 van Schewick, Nöltner, Abel, Burns, Workman, Symes, Guzman, Proietti, Bulashevska, Moreira, Soetedjo, Lowe and Grimbacher. Background: Diarrhoea is the commonest gastrointestinal symptom in patients with common variable immunodeficiency (CVID). Objective: The aim of this study was to describe the prevalence and clinical presentation of chronic and recurrent diarrhoea in the Royal-Free-Hospital (RFH) London CVID cohort, including symptoms, infections, level of inflammation, and microbial diversity. Methods: A cross-sectional study of adult CVID patients (139 out of 172 diagnosed with CVID completed the screening questionnaire). Those with diarrhoea ≥6 days/month had stool and blood samples analysed and completed the short Inflammatory Bowel Disease Questionnaire (sIBDQ). BMI, spleen-size, lymphocytes and gut-microbial diversity were compared. Due to logistical and clinical restraints, not all patients could be analysed on all measures. Results: 46/139 (33.1%) patients had current significant diarrhoea. In patients with past or present diarrhoea, BMI was lower (median 23.7 vs. 26, p = 0.005), malabsorption more common (57.97 vs. 35.71%, p = 0.011). CD4+ lymphocytes were higher in patients with diarrhoea (p = 0.028; n = 138), but CD4+ naïve lymphocytes were significantly higher in non-diarrhoea patients (p = 0.009, N = 28). Nine patients had confirmed or probable current gastrointestinal infections. Calprotectin was >60 μg/g in 13/29 with significant diarrhoea including 9 without infection. SIBDQ revealed a low median score of 4.74. Microbial alpha diversity was significantly lower in CVID patients compared to healthy household controls. There was no significant difference in alpha diversity in relation to antibiotic intake during the 6 weeks prior to providing samples. Conclusion: Patients with CVID and significant diarrhoea had infections, raised calprotectin, malabsorption, a lower BMI, an impaired quality of life (comparable to active IBD), and they differed from non-diarrhoea patients in their lymphocyte phenotyping. Furthermore, microbial diversity was altered. These findings strongly imply that there may be an inflammatory nature and a systemic predisposition to diarrhoea in CVID, which necessitates further investigation

    El ingreso de estudiantes en situación de discapacidad a la UNLP : Apoyos, políticas y desafíos

    Get PDF
    La presente ponencia es producto de los debates, interrogantes y reflexiones, que surgen de la labor en la Comisión Universitaria sobre Discapacidad de la UNLP (en adelante, CUD). Desde este espacio de trabajo colectivo e interdisciplinario, se trabaja en la planificación, ejecución y evaluación de políticas destinadas a garantizar, entre otras acciones, la accesibilidad académica de estudiantes en situación de discapacidad. En esta oportunidad, se desarrollan las estrategias implementadas con los estudiantes ingresantes a nuestra alta casa de estudios.Eje 2: Nuevas experiencias y trayectorias estudiantiles. Desafíos para la inclusión educativa en la universidad. Reflexiones y debates en torno de la inclusión educativa en la universidadSecretaría de Asuntos Académico

    Bayesian statistical modelling of human protein interaction network incorporating protein disorder information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We present a statistical method of analysis of biological networks based on the exponential random graph model, namely p2-model, as opposed to previous descriptive approaches. The model is capable to capture generic and structural properties of a network as emergent from local interdependencies and uses a limited number of parameters. Here, we consider one global parameter capturing the density of edges in the network, and local parameters representing each node's contribution to the formation of edges in the network. The modelling suggests a novel definition of important nodes in the network, namely <it>social</it>, as revealed based on the local <it>sociality </it>parameters of the model. Moreover, the sociality parameters help to reveal organizational principles of the network. An inherent advantage of our approach is the possibility of hypotheses testing: <it>a priori </it>knowledge about biological properties of the nodes can be incorporated into the statistical model to investigate its influence on the structure of the network.</p> <p>Results</p> <p>We applied the statistical modelling to the human protein interaction network obtained with Y2H experiments. Bayesian approach for the estimation of the parameters was employed. We deduced <it>social </it>proteins, essential for the formation of the network, while incorporating into the model information on protein disorder. <it>Intrinsically disordered </it>are proteins which lack a well-defined three-dimensional structure under physiological conditions. We predicted the fold group (ordered or disordered) of proteins in the network from their primary sequences. The network analysis indicated that protein disorder has a positive effect on the connectivity of proteins in the network, but do not fully explains the interactivity.</p> <p>Conclusions</p> <p>The approach opens a perspective to study effects of biological properties of individual entities on the structure of biological networks.</p
    corecore